欢迎来到我的范文网!

自由纺锤形视频

读书名言 时间:2020-09-01

【www.myl5520.com--读书名言】

翠冠梨的整形修剪
篇一:自由纺锤形视频

翠冠梨的整形修剪

(一)树形

中冠疏散分层形。干高60-80厘米,每主枝配置1-2个侧枝;二层主枝2-3个,一般不配置侧枝。

(二)修剪

1、中冠疏散分层形。定干高度60-80厘米,定值后1-2年选出基部3-4个主枝,2-5年中心干和主枝适度短截,根据延长枝长势留50-80厘米,以后可不短截或轻短截,在中心干上距离第一主枝越120厘米处开始留第二层主枝。5-6年后,骨干枝延长头以疏放为主,待中心干延长枝结果变弱后可落头开心。

2、自由纺锤形。定干高度100厘米,定植后第二年,主枝可适当短截,以后不短截或轻短截,中心干短截3-4年。顶端第二芽夹角小,冬剪时疏除,或在生长季5月中旬进行重短截,促进基部芽萌发。

3、成枝力强的品种应当适度疏除过密枝条,成枝力弱的幼树要注意目伤,促进成枝。梨树枝脆,生长季开张角度较为合适,角度不必太大,其结果后因果实重量可继续增大角度。

4、梨树萌芽率高、成枝力低,短枝量大,成花容易,幼树一般不采用促花措施,但对生长过旺树或枝,也可采用环剥或多道环切措施,控制生长促进花芽形成。

5、盛果期树通过修剪调节枝量,亩枝量保持5万左右,其中短枝占80-90%,中长枝占10-20%,花芽量2.5-3万个,亩产量可达1000-2000公斤。

6、盛果期树注意克服大小年。大年树长中枝多长放,中、长果枝多短截,对枝组进行细致修剪;小年树,长枝多进行重短截,尽量多留果枝。对过多 密枝梢及时疏除,对枝组注意回缩更新。重视光照条件改善,树冠覆盖率<80%。冠内透光率>40%,有利于优质果品生产。

7、盛果末期注意更新复壮。疏散分层形采取小更新,一般在2-3年生处回缩,剪去先端衰弱部位,保留直立壮枝。自由纺锤形可逐步进行、直到主枝彻底更新,利用基部或附近部位的萌条,培养新的主枝。

材料科学导论
篇二:自由纺锤形视频

第1 章 原子结构与键合

决定材料性能的最根本的因素是组成材料的各元素的原子结构,原子间的相互作用、相互结合,原子或分子在空间的排列分布和运动规律,原子集合体的形貌特征等。

物质是由原子组成的,而原子是由位于原子中心的带正电的原子核和核外带负电的电子构成的。 原子结构中的电子结构——决定了原子键合的本身。

1.1 原子结构

1.1.1 物质的组成

一切物质是由无数微粒按一定的方式聚集而成的。这些微粒可能是分子、原子或离子。

分子是能单独存在、且保持物质化学特性的一种微粒。分子的体积很小,如H2O分子的直径约为0.2 nm。而分子的质量则有大有小:H2分子是分子世界中最小的,它的相对分子质量只有2,而天然高分子化合物——蛋白质可高达几百万。

分子是由一些更小的微粒——原子所组成的。在化学变化中,分子可以再分成原子,而原子却不能再分,原子是化学变化中的最小微粒。量子力学中,原子并不是物质的最小微粒。它具有复杂结构。原子结构直接影响原子间的结合方式。

1.1.2 原子的结构

原子由质子和中子组成的原子核,以及核外的电子所构成。原子的体积很小,原子直径约为10

量级,原子核直径为10–15–10 m 数–24 m 数量级。原子的质量主要在原子核内。每个质子和中子的质量大致为1.67×10

–28

–19 g,电子的质量约为9.11×10

1.1.3 原子的电子结构 g,为质子的1/1836。原子呈电中性。原子核带正电(质子带正电,中子不 C),电子和质子数目相等。原子核与电子的结合力为静电力。 带电),电子带负电(1.6022×10

电子云:电子在原子核外空间作高速旋转运动,就好像带负电荷的云雾笼罩在原子核周围。

电子既具有粒子性又具有波动性,即具有波粒二象性。电子运动没有固定的轨道,但可根据电子的能量高低,用统计方法判断其在核外空间某一区域内出现的几率的大小。能量低的,通常在离核近的区域(壳层)运动;能量高的,通常在离核远的区域运动。

原子中一个电子的空间位置和能量可用四个量子数来确定:

(1)主量子数n

决定原子中电子能量以及与核的平均距离,即表示电子所处

的量子壳层,只限于正整数1,2,3,4,……量子壳层用一个大

写英文字母表示。

n = 1为最低能级量子壳层,最靠近核的轨道, K壳层, n =

2,3,4等依次为L,M,N壳层等。

(2)轨道角动量量子数l

给出电子在同一量子壳层内所处的能级(电子亚层),与电自由纺锤形视频。

子运动的角动量有关,取值为0,1,2,……,n-1。

n = 2,有两个轨道角动量量子数l2 = 0 和l2 = 1,即L壳层中,根据电子能量差别,还包含有两个电子亚层。常用小写的英文字母来标注对应于轨道角动量量子数li的电子能级(亚层):

li :0 1 2 3 4

能级:s p d f g

在同一量子壳层里,亚层电子的能量是按s,p,d,f,g的次序递增的。不同电子亚层的电子云形状不同,如s亚层的电子云是以原子核为中心的球状,p亚层的电子云是纺锤形……

(3)磁量子数mi自由纺锤形视频。

给出每个轨道角动量量子数的能级数或轨道数。每个li下的磁量子数的总数为2li + 1。对于li = 2 的 钠原子结构中K、L和M量子壳层的电子分布

情况,磁量子数为2 × 2 + 1 = 5,其值为-2,-1,0,+1,+2。

磁量子数决定了电子云的空间取向。如果把在一定的量子壳层上具有一定的形状和伸展方向的电子云所占据的空间称为一个轨道,那么s,p,d,f四个亚层就分别有1,3,5,7个轨道。

(4)自旋角动量量子数si

反映电子不同的自旋方向。si规定为?“↓”表示。

在多电子的原子中,核外电子的排布规律遵循以下三个原则:

①能量最低原理:

电子的排布总是尽可能使体系的能量最低。电子总是先占据能

量最低的壳层,只有当这些壳层布满后,电子才依次进入能量较高

的壳层,即核外电子由内往外依次按K、L、M层……排列;在同

一电子层中,电子则依次按s,p,d,f的次序排列。

②泡利(Pauli)不相容原理:

在一个原子中不可能有运动状态完全相同的两个电子,即不能

有上述四个量子数都相同的两个电子。主量子数为n的壳层,最多

容纳2n2个电子。

③洪德(Hund)定则:

在同一亚层中的各个能级中,电子的排布尽可能分占不同的能级,而且自旋方向相同。

当电子排布为全充满、半充满或全空时,是比较稳定的,整个原子的能量最低。

必须注意:电子排列并不总是按上述规则依次排列的,特别在原子序数比较大,d和f能级开始被填充的情况下,相邻壳层的能极有重叠现象。例如,4s的能量水平反而低于3d;5s的能量也低于4d,4f。

原子序数为26的铁原子理论上其电子结构应为:

实际上铁原子的电子结构却为:

它偏离了理论电子结构,未填满的3d能级使铁产生磁性行为。

需要强调的一点:对单个原子亦即孤立原子,其电子处在不同的分立能级上,可通过求解薛定谔方程,由4个量子数组(n li mi si)来描述其运动状态。但是,当大量的原子构成固体后,固体中电子不再束缚于个别的原子,而是在整个固体内运动,各个原子的能级因电子云的重叠而形成近似连续变化的能带。由于在固体中存在大量的电子,它们的运动是相互关联的,每个电子的运动都要受其他电子运动的牵连,因此这种多电子系统严格的解显然是不可能的。能带理论的建立帮助解决这一多电子系统的复杂问题。固体能带理论是目前凝集态物理,特别是研究固体中电子运动的基础理论,固体的许多性质,如电学特性、磁性能等都与固体的电子结构密切相关。

1.1.4 元素周期表

元素是具有相同核电荷数的同一类原子的总称。

元素周期律:元素的外层电子结构随着原子序数(核中带正电荷的质子数)的递增而呈周期性的变化规律。

元素周期表是元素周期律的具体表现形式,它反映了元素之间相互联系的规律,元素在周期表中的位置反映了那个元素的原子结构和一定的性质。同一周期中各元素的原子核外电子层数相同,从左到右:核电荷数依次增多,原子半径逐渐减小,电离能趋于增大,失电子能力逐渐减弱,得电子能力逐渐增强,金属性逐渐减弱,非金属性逐渐增强。同一主族中从上到下:电子层数增多,原子半径增大,电离能一般趋于减小,失电子能力逐渐增强,得电子能力逐渐减弱,金属性逐渐增强,非金属性逐渐减弱。另外,同一元素的同位素在周期表中占据同一位置,尽管其质量不同,但它们的化学性质完全相同。 11和?,反映电子顺时针和逆时针两种自旋方向,用“↑”和22

从元素周期表中可了解一种原子与其他元素化合的能力。

元素的化合价跟原子的电子结构,特别是与其最外层电子的数目(价电子数)密切相关,而价电子数可根据它在周期表中的位置加以确定。

总之,元素性质、原子结构和该元素在周期表中的位置三者有着密切的关系。可根据元素在周期表中的位置,推断它的原子结构和一定的性质;反之亦然。

1.2 原子间的键合

原子通过结合键可构成分子,原子之间或分子之间也靠结合键聚结成固体状态。

结合键可分为化学键和物理键两大类。化学键,主价键,包括金属键、离子键和共价键;物理键,次价键,范德瓦耳斯力。此外,还有氢键,其性质介于化学键和范德瓦耳斯力之间。

1 金属键

金属原子结构的特点——最外层电子数很少,且原属于各个原子的价

电子极易挣脱原子核的束缚而成为自由电子,并在整个晶体内运动,即弥

漫于金属正离子组成的晶格之中而形成电子云。

金属键:由金属中的自由电子与金属正离子相互作用所构成的键合。

绝大多数金属均以金属键方式结合。

特点:①电子的共有化。

②既无饱和性又无方向性,每个原子有可能同更多的原子相结

合,趋于形成低能量的密堆结构。

性质:良好的延展性、导电、导热性能。

2 离子键

大多数盐类、碱类和金属氧化物。

实质:静电引力,正负离子为结合单元。

特点:以离子而不是以原子为结合单元,要求正负离子作相间排列,并

使异号离子之间吸引力达到最大,而同号离子间的斥力为最小,无方向性,

无饱和性。

性质:①熔点和硬度均较高(一般离子晶体中正负离子静电引力较强,

结合牢固)。

②良好电绝缘体。但当处在高温熔融状态时,正负离子在外电场作用下

可以自由运动,此时即呈现离子导电性。

3 共价键

实质:共价键是由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。

? 非极性键:共用电子对在两成键原子之间。

? 极性键:共用电子对偏离或偏近某一成键原子。

氢分子中两个氢原子的结合是最典型的共价键(非极性键)。共价键在亚金属(碳、硅、锡、锗等)、聚合物和无机非金属材料中均占有重要地位。

NaCl离子键的示意图 金属键示意图

特点:饱和性 配位数较小,方向性(s亚层电子呈球形对称除外)

共价键的方向性:除s亚层的电子云呈球形对称外,其他亚层如p,d等的电子云都有一定的方向性。在形成共价键时,为使电子云达到最大限度的重叠,键的分布严格服从键的方向性;

共价键的饱和性:当一个电子和另一个电子配对以后,就不再和第三个电子配对了,成键的共用电子对数目是一定的。

另外,共价键晶体中各个键之间都有确定的方位,配位数比较小。共价键的结合极为牢固,故共价晶体具有结构稳定、熔点高、质硬脆等特点。由于束缚在相邻原子间的“共用电子对”不能自由地运动,共价结合形成的材料一般是绝缘体,其导电能力较差。

4 范德瓦耳斯力

原子或分子由于近邻原子的相互作用引起电荷位移而形成偶极子。

范德瓦耳斯力是借助这种微弱的、瞬时的电偶极矩的感应作用,将原来具有稳定的原子结构的原子或分子结合为一体的键合。

①静电力:是由极性原子团或分子的永久偶极之间的静电相互作用所引起的,其大小与绝对温度和距离的7次方成反比;

②诱导力:是当极性分(原)子和非极性分(原)子相互作用时,非极性分子中产生诱导偶极与极性分子的永久偶极间的相互作用力,其大小与温度无关,但与距离的7次方成反比;

③色散力是由于某些电子运动导致原子瞬时偶极间的相互作用力,其大小与温度无关,但与距离的7次方成反比,在一般非极性高分子材料中,色散力甚至可占分子间范德瓦耳斯力的80%~100%。

属物理键,系次价键,没有方向性和饱和性。键能比化学键的小1~2个数量级,远不如化学键结合牢固。

普遍存在于各种分子之间,对物质的性质,如熔点、沸点、溶解度等的影响很大,

注意,高分子材料的相对分子质量很大,其总的范德瓦耳斯力甚至超过化学键的键能,故在去除所有的范德瓦耳斯力作用前化学键早已断裂了。所以,高分子往往没有气态,只有液态和固态。

范德瓦耳斯力也能在很大程度上改变材料的性质。

不同的高分子聚合物之所以具有不同的性能,分子间的范德瓦耳斯力不同是一个重要的因素。 5 氢键

裸露的原子核与近邻分子的负端相互吸引——氢桥

氢键是一种极性分子键,存在于HF,H2O,NF3等分子间。由于氢原子核外仅有一个电子,在这些分子中氢的唯一电子已被其他原子所共有,故结合的氢端就裸露出带正电荷的原子核。这样它将与邻近分子的负端相互吸引,即构成中间桥梁,故又称氢桥。氢键具有饱和性和方向性。

属于次价键。因它也是靠原子(分子或原子团)的偶极吸引力结合在一起的。键能介于化学键与范德瓦耳斯力之间。氢键可以存在于分子内或分子间。氢键在高分子材料中特别重要,纤维素、尼龙和蛋白质等分子有很强的氢键,并显示出非常特殊的结晶结构和性能。

注意:实际材料中单一结合键的情况并不多见,大部分材料内部原子间结合往往是各种键合的混合体。如,金属材料:占主导的是金属键,然而过渡族金属W,Mo等的原子结合中也会出现少量的共价结合,这也正是它们具有高熔点的原因所在;金属与金属形成的金属间化合物:组成的金属之间存在电负性的差异,有一定的离子化倾向,出现金属键和离子键的混合现象;陶瓷化合物:离子键与共价键混合的现象更是常见,化合物AB中离子键的比例取决于组成元素A和B的电负性差,电负性相差越大,则离子键比例越高。金刚石具有单一的共价键,同族的Si,Ge,Sn,Pb元素在形成共价键结合的同时,则有一定比例

的自由电子,意味着存在一部分的金属键,且金属键所占的比例按族中自上至下的顺序递增,到Pb已成为完全的金属键结合。聚合物和许多有机材料的长键分子内部是共价键结合,链与链之间则是范德瓦耳斯力或氢键结合,颇为复杂。

1.3 高分子链

高分子材料的基本成分——有机高分子化合物。

高分子的化学组成和结构单元本身的结构——一般都比较简单。

高分子的结构是相当复杂的:相对分子质量可高达几万甚至上百万,包含的结构单元可能不止一种,每一种结构单元又可能具有不同的构型,成百上千个结构单元连接起来时还可能有不同的键接方式与序列,结构的不均一性和结晶的非完整性。

高分子结构包括高分子链结构和聚集态结构两方面, 链结构又分为近程结构和远程结构。近程结构包括构造与构型。“构造”是研究分子链中原子的类型和排列,高分子链的化学结构分类,结构单元的键接顺序,链结构的成分,高分子的支化、交联与端基等内容。“构型”是研究取代基围绕特定原子在空间的排列规律。近程结构属于化学结构,又称一次结构。远程结构又称二次结构,是指单个高分子的大小与形态、链的柔顺性及分子在各种环境中所采取的构象。聚集态结构是指高分子材料整体的内部结构,包括晶态结构、非晶态结构、取向态结构、液晶态结构及织态结构。晶态结构、非晶态结构、取向态结构、液晶态结构属于三次结构,是描述高分子聚集体中分子间是如何堆砌的。织态结构是指不同分子之间或高分子与添加剂分子之间的排列或堆砌结构,又称高次结构。

自由纺锤形视频。

1.3.1 高分子链的近程结构

1. 链结构单元的化学组成

? 高分子链:单体通过聚合反应(加聚反应或缩聚反应)连接而成的链状分子。

? 单体:能形成高分子化合物中结构单元的低分子化合物。

? 聚合度:高分子链中的重复结构单元的数目。

? 重复单元:聚合物中化学组成相同的最小单位。

? 结构单元:构成高分子链并决定高分子结构以一定方式连接起来的原子组合。

高分子链的化学组成不同,高分子的化学和物理性能也不同。

按结构单元的化学组成不同,高分子可分为:

①碳链高分子:分子链全部由碳原子以共价键相连接而成,结构差别仅在于侧基不同。

聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、聚甲基丙烯酸甲酯、聚四氟乙烯。

大多由加聚反应制得,不易水解,而且,除聚四氟乙烯外都是典型的热塑性塑料,它们可以制成薄膜、片材、各种异型材及纺丝。

聚1,4-丁二烯、聚异戊二烯

是常见的橡胶材料。聚1,4-

丁二烯为合成橡胶,也称丁

苯橡胶;聚异戊二烯为天然

②杂链高分子:分子主链上除碳原子外还含有氮、氧、硫等原子。

橡胶。

海底世界设计教学4月25
篇三:自由纺锤形视频

海底世界 (第二课时)自由纺锤形视频。

一、激趣导入

1.同学们,前段时间,我们一起观光了美丽的南沙群岛,领略了大海的碧波浩淼。(课件出示)今天就让我们当一次潜水员,一起潜入海底,去探索那奇妙的海底世界!

2.注意哦,咱们可是要潜入海底,一定不要忘了“底”字下面的这一点儿。好,一起读课题。(生读课题,师在“底”的下面描红点。)

3.通过上节课的学习,我们知道海底是一个(?)的世界(指名回答) (师生同写:景色奇异、物产丰富)

我们一起来读一读。出示:“海底真是个景色奇异、物产丰富的世界。”

4.为什么说海底是个景色奇异、物产丰富的世界呢?我们一起去海底探秘!

二、学习课文2自然段动物的声音

1.同学们,你们看(出示课件),这时候海面上是?——(波涛汹涌),海底却依然是那么?——(宁静)什么是“波涛汹涌”?你能换个词吗?那“依然”又是什么意思呢?它还可以换成?(课件出示)那么海底是否一点儿声音也没有呢?(也不是)这种自问自答的句子就是设问句。

2.其实海底的动物们常常在“窃窃私语”,怎么样是窃窃私语呢?和你的同座“窃窃私语”一下!

生活中,你在什么情况下和别人窃窃私语过呢?(图书馆、阅览室)你能用一句话给我们说说吗?

【瞧,你们已经会用窃窃私语来描述生活中的现象了。】

3.让我们戴上特制的水中听音器,去海底听听动物的“窃窃私语”

课件出示: “如果你用上特制的水中听音器,就能听到各种各样的声音:有的像蜜蜂一样嗡嗡,有的像小鸟一样啾啾,有的像小狗一样汪汪,有的像人在打呼噜……”

4.读读课文第二段,人们能听到哪些声音呢?(指名说声音)这些声音生活中你听过吗?指名学生说说。

5.想听听这些动物的声音吗? (点击课件,师生齐听)这是谁发出的声音?(边听边问)

这么有趣的声音,你能用朗读来表现吗?(练习读 指名读,其他学生可以为他配音。)

师:作者用了打比方的方法,形象地写出了海底动物的窃窃私语。

(课件出示 打比方)

6.同学们,我们读书,不仅要关注语言文字,还要关注(标点符号)!这里有个省略号,你读出了什么?(指名答)除了这些声音,海底还会有什么声音呢?用上课文中的句式和同桌一起练练吧。(出示课件)如果你用

上特制的水中听音器,就能听到各种各样的声音:有的像 ,有的像 ,有的像 ,有的像 ……

①如果你用上特制的水中听音器,就能听到各种各样的声音:有的像小牛一样哞哞,有的像小猫一样喵喵,有的像小羊一样咩咩,有的还好象在唱歌……

②如果你用上特制的水中听音器,就能听到各种各样的声音:有的像小猪一样哼哼,有的像小青蛙一样呱呱,有的像小羊一样咩咩,有的还好象在演奏……

7.(引读)它们吃东西的时候——行进的时候——遇到危险的时候—

8.小结:海底的动物发出的声音可真是千奇百怪,无所不有啊,给我们以美的享受,下面就请同学们美美地朗读第二自然段。(捧起书齐读)

板书:奇妙的声音

9.在宁静的大海深处,我们能听到这么多有趣的声音,的确能让我们感受到:出示:海底真是个景色奇异、物产丰富的世界。

三、学习课文3——5自然段

1.快速阅读课文的3、4、5段,作者又从哪几个方面写出了“海底真是个景色奇异、物产丰富的世界”?

2.交流,(出示课件)海底动物的活动、植物的差异、丰富的矿藏)

3.走进动物馆

(一)动物的活动

让我们先走进神奇的动物馆,(课件出示)请同学们默读课文第3自然段,想想作者介绍了哪些动物,用线画出他们的名称。

出示: “海底动物各有各的活动特点。??像闪烁的星星。”

(1)自学第三段,思考:

(2)交流:这段写的是——(引读)板书:动物的特点

哪几种动物?(海参 梭子鱼 乌贼和章鱼 贝类 深水鱼)

(3)你最喜欢谁的活动方式?你对哪种动物的活动特点感兴趣?

你想读读哪种动物的活动特点?你觉得哪种动物的活动能够方式比较有趣?

海参:它让你感兴趣的是什么?

【海参的活动方式是靠肌肉伸缩爬行)特点是什么?(慢)】哪些词看出它的慢?(只能每小时四米)四米多长?

你能通过你的朗读,让我们感受到海参爬行速度之慢吗?(指名读)

【仿佛看到了它一点一点挪动的样子,真可爱!“只能”读得很到位,我们真替海参着急呀!】

梭子鱼:它有什么特点?

(快)从哪些地方看出来?“几十千米”——( 列出数据,让我们感受到梭子鱼速度之快,)

还有哪里看出它的速度之快? “比??还快”——作者把它和火车做了一个比较,突出了它的快,这种说明方法就是——作比较 能读好吗?

乌贼和章鱼:你为什么喜欢它?

什么是反推力?你能用生活中的例子来说明吗?(划船、射击)【你们可真了不起,小小年纪竟然知道得那么多。】指名读【这个景象真有趣。】

对乌贼和章鱼你有什么好补充的吗?教师可补充不一样的地方

(乌贼:墨鱼,头的前方、口的周围长着八只放射状排列的脚;章鱼:脚长,只有八只脚,没有像乌贼那样专门用来捕捉食物的脚,向八条袋子,又叫“八带鱼”)

贝类:“巴”是什么意思?(它多聪明啊!)点击变色

“都说天下没有免费的午餐,可是聪明的贝类却可以搭着轮船做免费的环球旅行,真是太神奇了!”你能读好吗?

深水鱼:说说你的理由?闪烁。

【出示图片】你仿佛看到了一幅怎样的画面?它就像星星一闪一闪的,多漂亮啊,这样的打比方真形象!(出示:打比方)谁再读?

想象:在漆黑的海底,有这么一群神奇的鱼儿把漆黑的海底世界打扮得如同缀满星星的夜空,不仅漂亮,而且这景色确实让我感到奇异。

(4)刚才认识了几种动物的特点,赶快去书上找找它们的身影书中图

(5)这段主要写了海底的各种动物,文中用一句话就告诉了我们。 (点击变色)这种构段方式就是——总分。

(6)这一段不仅采用总分的构段方式,还运用了列数据、作比较、打比方的方法把动物的活动方式写得活灵活现。让我们读一读这一段,再次感受动物的神奇。(第一句齐读,其它句子分组读。)

(7)海底的动物可丰富了,可不止这么几种,你还知道哪些动物,他们的活动是怎样的?(四翅飞鱼起飞前迅速冲出水面,这时的速度超过74公里,在空中最长能飞90秒,可以飞行195米;而游泳能力最差的是翻车鱼,它有4米多长,重2吨,却只能随波逐流,波涛想把它带到哪里就把它带到哪里;隐鱼,白天钻进海参的肚子里睡觉,夜里钻出来找小虾充饥; 金枪鱼体呈纺锤形,具有强劲的肌肉及新月形尾鳍,鳞以退化为小圆鳞,适于快速游泳,最高游速达每秒20米;海龟最独特的地方就是龟壳。它可以保护海龟不受侵犯,让它们在海底自由游动。)

(指名)想看看他们吗?(课件,欣赏动物图片)

(8)此刻我们更能感受到-出示:海底真是个景色奇异、物产丰富的世界。

(二)植物的差异

4.走进植物馆

(1)过渡:海底的植物也是道奇异的风景线。他们差异很大,具体表现在哪两个方面呢?默读第四段。(出示第四段)(板书:植物的差异)

(2)交流:色彩多种多样,还可以用哪个词(五彩缤纷、色彩各异)读好 ;形态各不相同。

(3)(出示)看,这是褐色的植物,这是红色的,还有墨绿色的,五颜六色的植物,好神奇!

(4)植物的形态不同,这里举了例子,就拿—(大家族海藻来说)(课件出示)这是只能在显微镜下才能看到的硅藻,这是长达几百米的巨藻。

你能用你的朗读告诉大家海底植物之间的差异吗?捧起书读(指名读) 这一自然段同样是用总分的构段方式让我们了解海底植物的“差异”,难怪人们会发出这样的感叹:出示:海底真是个景色奇异、物产丰富的世界。5.海底还有什么?

(三)了解矿物

(1)(出示)引读:海底有(山峰)、也有(峡谷)。还有什么?高原、深沟、平原、高山??资料补充(海底世界并不象人们所想像的或是象表面看起来那样平缓和宁静,相反却是地球上最活跃最动荡不安的地带。地震火山活动频繁,形成高山峻岭,只不过一切都掩盖在海水之下进行而已。)。出示图片:海底的地形

(2)这里还有——(煤、铁、石油、天然气、稀有金属)??这些都属于———(矿物)(板书:矿藏)

(3)这些矿物的储备—(板书:丰富的),从(富含)就可以看出来

出示资料卡:海底的资源

可以毫不夸张地说,海洋中几乎有陆地上有的各种资源,而且还有陆地上没有的一些资源。

如:世界海洋3500~6000米深的洋底储藏的多金属结核约有3万亿吨。其中锰的产量可供世界用18000年,镍niè可用25000年。

海洋地质专家估计,海底储存石油 2500 亿吨,比陆地储油量大3 倍,90 年代约产油 6 亿多吨。海水里的铀储量约为 40 亿吨,是陆地储量的 4000 多倍。

6.海底有如此众多的动物、植物和矿物,让我们深深地感受到:

出示:海底真是个景色奇异、物产丰富的世界。

四、总结全文,深化主题

1.同学们,这节课我们像潜水员一样潜入海底,(指板书,连线)欣赏了奇妙的声音、神奇的动物、五彩缤纷、形状各异的植物,多样的地形、丰富的矿物,难怪作者说(出示课件)——海底真是个景色奇异、物产丰富的世界。

2. 看到这样一个景色奇异,物产丰富的海底世界,此时,你一定有心里话想对大海说——出示:大海呀,我想对你说——

A、我真没想到大海深处有着那么奇妙的声音!大海就像一座天然的乐园!

B、海底居然有那么多奇异的植物,就像一个美丽的大花园!

C、海底世界的动物各有各的活动方式,就像一个有趣的动物园!

D、海底世界景色奇异、物产丰富,简直就是一个巨大的宝库呀!

E、大海呀,我爱您!我真想把您变成我的第二个家园!

3.来,让我们静静地欣赏海底美妙的世界吧!(课件视频)

本文来源:http://www.myl5520.com/mingrenmingyan/120880.html

推荐内容