欢迎来到我的范文网!

燃气锅炉氮氧化物超标

励志名言 时间:2020-08-07

【www.myl5520.com--励志名言】

对燃气燃烧产生氮氧化物污染的控制与清除
篇一:燃气锅炉氮氧化物超标

对燃气燃烧产生氮氧化物污染的控制与清除

1002班 樊森彬

20100241

摘要:燃气燃料燃烧过程中,为了满足环保要求,最复杂的问题就是如何降低氮氧化物的生成量。当采用高温预热空气时,一方面可使单位燃耗降低,从而污染物排放量相应减少;另方面可使局部火焰温度升高而使NOx 生成的燃烧方式,一是采用烟气再循环燃烧法;二是采用两段式燃烧法;或者二者结合起来。 本文就针对于燃气燃烧产生氮氧化物生成因素进行分析,以达到控制与降低氮氧化物生成量的目的。

关键词:燃气燃烧,氮氧化物,环保

正文:1、氮氧化物的性质与危害

氮氧化物是常见的空气污染物,通常指一氧化氮和二氧化氮,常以N02表示。一氧化氮是一种无色无味的气体,微溶于水。在空气中能迅速变为二氧化氮。二氧化氮有刺激性,在室温下为红棕色,具有较强的腐蚀性和氧化性,易溶于水,在阳光作用下能形成NO及03。 在氮氧化物高污染区(空气中氮氧化物质量浓度约在0.20mg/m3)儿童肺功能和呼吸系统疾病发病率均相对较高。国外调查表明,使用煤气家庭患有呼吸系统症状和疾病的儿童比例增加,且儿童肺功能明显降低。氮氧化物对人体产生危害作用的阈质量浓度为0.31~0.62mg/m3。

2、氮氧化物生成机理

烟气中的NOx主要是NO,约占90%左右,排入大气后部分再氧化成NO2,故研究NOx的生成机理,主要是研究NO的生成机理。NO的生成形式有燃料型、温度型和快速温度型三种。燃烧过程生成的NO,主要是温度型NO(T—NO),还有一部分快速温度型NO(P—NO),亦称瞬时NO。

T—NO生成机理:T—NO是空气中的氮气和氧气在高温下生成的,其生成机理是由前苏联科学家Zeldvich于1964年提出的。当燃气和空气的混合气燃烧时,生成NO的主要反应过程如下:

N2+O=NO+N

N+O2=NO+O⑵

按化学反应动力学方程和Zeldvich的实验结果,NO的生成速度可以表示为:

式中:[NO],[N2],[O2]-NO,N2,O2的浓度(gmol/cm2)

t一时间(s)

T一反应绝对温度(K)

R一通用气体常数(J/gmol.K)

对氧气浓度大,燃料少的预混合火焰,用(3)式计算的NO生成量,其计算结果与实际结果相当一致。但在小于化学当量比,即燃料过浓时,还存在下述反应:N+OH=NO+H

从(3)式可知,NO生成速度与T、[N2]、[O2]有关,由于燃气在空气中燃烧时,氮气浓度变

化很小,故[N2]对NO生成速度影响很小,(3)式中[O2]取决于燃烧过程中燃气与空气的当量比,所以燃烧过程的温度及当量比对NO的生成影响很大当燃烧温度低于1500摄氏度时,T—NO生成量极少,当燃烧温度高于1500摄氏度时,T—NO生成量明显增大。温度每增加100K,NO生成速度约增大5倍,NO的生成量在燃料过多时,随氧气浓度增大而成比例增大。燃烧温度在当量比等于1附近出现最大值,相应的NO的生成速度也达到最大值。在过量空气系数远离1时,NO的生成速度将急剧降低。同时NO的生成量随烟气在高温区内的停留时间增加而增大。另外,由于(1)式即原子氧O和氮分子N,反应的活化能比原子氧和燃料中可燃成分反应的活化能大,故NO的生成速度比燃烧反应慢,所以在火焰中不会生成大量的NO,NO的生成过程是在火焰带的后端进行的,也就是说在火焰下游大量生成的。综上所述,影响T—N0生成的主要因素是温度、氧气浓度和停留时间。

P—NO生成机理:快速温度型NO是碳氢系燃料在过量空气系数为0.7—0.8并预混燃烧时生成的,其生成地点不是在火焰面的下游,而是在火焰内部。它的生成机理至今还没有明确的结论。Bowman认为P—NO的产生,是由于氧原子浓度远超过氧分子离解的平衡浓度的缘故。Fenimore认为P—NO是在碳氢化合物燃料过浓燃烧时,先通过燃料产生的CH原子团撞击N2分子,生成CN类化合物,生成的中间产物N、CN、NCH等,再进一步被氧化而生成NO。通常,P—NO的生成量受温度影响不大,且比T—NO生成量小一个数量级。

F—NO的生成:F—NO是以化合物形式存在于燃料中的氮原子,在燃烧过程中被氧化而生成的。燃料中的氮比空气中的氮更容易生成NO,其生成温度为600℃—700℃。气体燃料燃烧,由于其氮含量很低,燃烧过程所生成的燃料型NO很少,可以忽略不计。

NO2的生成:NO2是由NO氧化而成,其过程按如下反应进行:NO十HO2=NO2+OH

一般在预混火焰及扩散火焰的反应区或火焰面下游的低温区能检测出NO2的存在,而火焰面下游的高温区产生极少。大量的NO转化为NO2是在烟气排入大气后进行的。反应速度与空气中NO的浓度关系很大,浓度高则NO2转化快,否则转化慢。

3、应用高温预热空气低氧燃烧控制氮氧化物产生

高温空气燃烧技术是田中良一等人在二十世纪八十年代末期提出的;九十年代初期,在日本政府资助下,由日本一些企业和研究所共同开发完成。田中良一领导的研究小组以陶瓷蜂窝体作蓄热体,预热空气的温度仅比炉温低50~100℃;同时,在燃烧区将助燃空气的氧含量由21%降到2~4%,解决了高温空气燃烧下高NOX排放问题。使用高温空气燃烧技术,排烟温度低于150℃,低温烟气带走的能量只占燃料化学能的10%左右,炉子的热效率接近90%。 使用高温空气燃烧技术的加热炉示意图如下图所示。常温空气流经换向阀进入蓄热室A,在经过蓄热体(陶瓷小球或蜂窝体)时被加热,在短时间内常温空气被加热到接近炉膛温度;高温空气进入炉膛后,卷吸周围炉内的烟气形成含氧量低于21%的低氧高温气流,同时向这股气流中注入燃料油或气,使燃料在低氧状态下燃烧;炉膛内燃烧后的烟气流经蓄热室B和换向阀排入大气,高温烟气在经过蓄热体时将热量储存在蓄热体内,温度降低至150℃以下。工作温度不高的换向阀以一定的周期(一般为30~180秒)进行切换,使两个蓄热体处于蓄热与放热交替工作状态。

在高温空气燃烧技术中,由于燃烧用空气被预热到>800℃,大大超过了燃气的着火温度,因而燃气只要遇到氧就可发生激烈化学反应,着火、燃烧的稳定性极好。日本对丙烷燃烧的研究表明当空气温度大于500℃,含氧量5%时,仍可获得稳定的燃烧火焰。假如助燃空气中氧浓度较高,在可燃成分生成h2o\co2时,大量nox也被生成。假如氧浓度较低,测燃烧过程将受到燃气和氧的混合过程控制。由于氧气和燃气的燃烧反应活化能低于氧气与氮原子的反应活化能,所以氧气首先与燃气发生燃烧反应。只有当氧气有剩余时,才进行氧原子与氮原子的反应生成nox。只要合理控制炉内氧气浓度的分布,不出现局部炽热点,抑制最高温度,使炉内温度均匀。实验模拟结果表明,氧浓度为4%时,火焰最高温度与平均温度之比不大于1.1,而氧浓度为21%时此比值为1.57.实际研究表明当燃烧温度低于1300℃时,热力型nox生成较少。这样尽管空气被预热到很高温度,但由于火焰最高温度相对较低,则 抑制了nox的生成。如空气预热到1150℃,氧气含量由21%降到2%时,nox生成量由3750mg/m3减少为54mg/m3.

4、燃料分级燃烧技术控制氮氧化物产生

在空气分级燃烧技术中,燃料先进行的是富燃料燃烧,不利于点燃和稳定燃烧,为此燃料再燃烧技术采用的是另一个思路,即燃料先经过完全燃烧,生成NOx,然后现利用燃料中的还原性物质将其还原,从而减少NOx排放。与空气分级燃烧技术类似,燃料再燃烧技术有通过燃烧器实现燃料分级和炉膛内燃料再燃两类。

① 通过燃烧器实现燃料分级。燃料分级燃烧器原理就是在燃烧器内将燃料分级供入,使一次风和燃料入口的着火区在富氧条件下燃烧,提高了着火的稳定性,然后再与上方喷口进入的再燃燃料混合,进行再燃。此类燃烧器中最具代表性的是德国Steinmuller公司MSM低NOx燃烧器,由于应用并不广,这里不详细介绍。

② 炉膛内燃料再燃。如图3-20,燃料再燃法将整个炉膛分成了主燃区、再燃区和燃尽区三个部分。在主燃区,约80%的燃料在富氧条件下点燃并完全燃烧,此处的过量空气系数保持大于1,生成一定NOx;其余的燃料在再燃区送入,与主燃区生成烟气及未燃尽煤粒混合,形成还原性气氛,此处的总的过量空气系数小于1。燃料中的C、CO、烃以及部分还原性氮,将NOx还原成分子氮,如

2NO?2C?N2?2CO2

2NO?2CO?N2?2CO2

2NO?2CnHm?(2n?m?1)O2?N2?2nCO2?mH2O 2

最后在再燃区的上方通入过量空气(火上风),使总的过量空气系数大于1,使未燃烧的燃料完全燃烧,因此称为燃尽区。但由于此时的温度已经降低,NOx生成量并不大。燃料再燃烧法的再燃燃料可以选用煤粉、天然气或燃料油等。由于再燃区范围往往较窄,燃料的停留时间较短,因此再燃燃料需要容易着火,如果选用煤粉,通常采用高挥发分的煤种,且磨制成超细粉,这往往使工艺复杂,成本提高。所以采用天然气再燃其工艺就比较简单,同时天然气中杂质氮很少,本身燃烧不会增加NOx的生成,是比较有效的二次燃料。

5、炉内分级燃烧技术

炉内燃料分级燃烧技术 目前较为常用的燃料分级燃烧技术为细粉再燃技术,它的基本原理是:细粉在主燃区上部的再燃区富燃料状态下燃烧,生成大量CH基团,形成还原性气氛,NO在遇到烃根CHi和未完全燃烧产物CO、H2、C、CnHm时,发生NO还原反应;另外,细粉具有良好的燃烧特性,燃烧速率更快,极易燃烬,并且在燃烧过程中生成大量的CO气体,使碳颗粒表面的还原性气氛增加,还原部分以焦炭氮(C-H)形式析出的燃料NOx,降低NOx排放的总量。对于电站的燃煤锅炉,可以将从主燃料中分离出的细煤粉颗粒作为细粉送入炉膛内性燃烧,形成还原性气氛。类似于三次风的作用,一方面可以用作部分燃烬风,另一方面其中少 量的细粉颗粒还可以形成还原性气氛,使部分NOx还原成N2。

结论:随着国家新的大气排放标准的颁布实施,对电站锅炉的NOx排放已提出要求,低NOx燃烧技术将会得到推广应用,并进一步得到完善。为满足环保要求,采用切实可行的措施及改造方案,降低锅炉的NOx排放。如锅炉的燃烧优化调整、空气分级燃烧、燃料分级燃烧、烟气再循环及低NOx燃烧器等。不同的锅炉、不同的燃烧方式及煤种特性,可选用不同的低NOx 燃烧技术,从燃烧方面达不到标准要求的,须安装脱硝装置,以降低NOx的排放。 参考文献:燃烧与污染控制 同济大学出版社

试论燃气燃烧过程氮氧化物的控制 徐永生 燃气高温空气燃烧过程中氮氧化物排放特性研究 液化石油气低NOx燃烧技术探讨 吉林工业技术学院

浅谈如何降低锅炉烟气氮氧化物
篇二:燃气锅炉氮氧化物超标

浅谈如何降低锅炉烟气氮氧化物

[摘要]本文基于工作实践,针对当前锅炉工作的现状,提出了几种主要降低锅炉烟气氮氧化物的方法,希望给相关人员一些启迪和思考,改善锅炉烟气排放的空气质量,保证人类的健康。

【关键词】氮氧化物;锅炉烟气;控制脱除

凡是由氮和氧元素构成的化合物都可称作氮氧化物,根据科学研究显示,几乎所有的氮氧化物对人都有毒害作用。直接吸入会引发呼吸道疾病,氮氧化物与紫外线结合产生光化学污染对人的眼睛会造成灼伤,另外由氮氧化物和水形成的酸雨会对植物、土壤等造成不同程度的破坏。锅炉烟气中所排放的氮氧化物绝大部分是源于煤炭的燃烧,主要由是一氧化氮和二氧化一氮构成,其中一氧化氮占了近九成,而且近年来锅炉产生的氮氧化物的排放量呈不断上升趋势,并有可能取代二氧化硫成为排放量最大的酸性气体,对社会的危害性不言而喻。下面我们根据锅炉的现状和氮氧化物的化学特性介绍几种常见的降低氮氧化物排放量的方法。

一、烟气再循环

烟气再循环这项技术现在已被广泛采用,它通过提取一部分通向空气预热器的烟气,使其在炉内被第二次利用,利用惰性气体能够带走一部分热量并降低炉内氧浓度,从而达到控制火焰温度,使燃烧不至于太快,这样氮氧化物的产生也会变少。烟气再循环的效率很高,每回收五分之一左右的烟气,氮氧化物的排放量可以减少四分之一。这是比较常用的消除氮氧化物的方法,不过它的缺点是需要上述很独特的设备群,且要占用很大的场地面积。

二、空气分级燃烧

空气分级燃烧这项技术发展成熟,被采用的也很多。这种方法的原理是,把燃烧的过程分成几个进程,第一步是控制主燃烧器中的空气流量,空气进入炉膛的时候留下四分之一左右,这个值是理论总量的五分之一左右,此时燃料的燃烧得不到充分的氧气,氮氧化物产生量自然也不多。之前剩余下来的空气在燃料不完全燃烧完成后通过主燃烧器顶端的空气输送口进入炉膛,与燃烧后的烟气混合再次燃烧,最终燃料还是完全燃烧了,可是氮氧化物因产生条件不足导致产生量减少。这种方法的优点是在成功率高,经过一次分级燃烧,氮氧化物的排放量可以减少三成,并且在降低排放物的同时还可以促进燃料的完全燃烧。

三、燃料分级燃烧

燃料分级燃烧的原理来自于氮氧化物的化学特征,氮氧化物与烃基加上一氧化碳、氢气、碳等在一定条件下,发生反应变回氮气。根据这一特征,可以将大部分的燃料导入一级燃烧区,在充分燃烧的情况下产生氮氧化物,剩下少量的燃料导入二级燃烧区,在不充分燃烧的情况下生成上述还原能力很强的气体,然后再将这两股气体混合使其反应产生氮气。这种方法的优点是效率非常高,一次反应可以使排放量降低一半左右,并且通过反应还可以起反馈作用,抑制氮氧化物的再生。燃料分级燃烧与空气分级燃烧相比可以获得更好的的清除效果,但这是建立在更难操作的前提下,组织好燃烧过程,对于燃料分级燃烧是至关重要的。

四、选择性催化还原法

选择性催化还原法的原理是,在催化剂的作用下,使用可以与氮氧化物(主要是一氧化氮)发生还原反应,而不与其他气体发生反应的的还原剂来生成氮气。

天然气燃烧产生污染物计算方法(实用!推荐)
篇三:燃气锅炉氮氧化物超标

天然气燃烧产生污染物计算方法(非常实用)

天然气燃烧产生污染物计算方法为保护环境,建设生态文明,国家鼓励使用天然气代替燃煤,但使用天然气仍会排放污染物,应当征收排污费。本文循着“污染物排放量=废气量×污染物浓度”这一计算公式,来探讨如何征收天然气锅炉的排污费。

一、废气量

根据《排污申报登记实用手册》231页举例计算,1m3天然气完全燃烧产生的废气量为10.89m3。

实际天然气燃烧时产生的废气,与天然气成分,完全燃烧的比例等都有关系,但通常认为废气量为天然气量的10-11倍。取10倍最好计算,但取10.5倍似乎更为合理。

例:1万m3天然气,燃烧后的废气量即为10.5万m3。

二、主要污染物

(一)二氧化硫

天然气中含有硫化氢(H2S),国家规定其出厂含量不能超过0.01%。天

然气中硫化氢燃烧时,会生成等体积二氧化硫(SO2)。

《排污申报登记实用手册》231页举例计算,当硫化氢含量为0.0052%时,每万m3天然气产生二氧化硫为1.5kg。

李先瑞、韩有朋、赵振农合著《煤、天然气燃烧的污染物产生系数》一文中指出,每万m3天然气燃烧产生二氧化硫约为1.0kg。

天然气燃烧产生的二氧化硫,与天然气中所含硫化氢比例关系最大,在没有检测数据支撑时,二氧化硫浓度为确定为10-15mg/m3。

《锅炉大气污染物排放标准》规定,燃气锅炉二氧化硫最高允许排放浓度为100mg/m3。

(二)氮氧化物

《煤、天然气燃烧的污染物产生系数》一文中指出,每万m3天然气燃烧产生二氧化氮约为6.3kg。

按这一数据,氮氧化物浓度约为60mg/m3。

《锅炉大气污染物排放标准》规定,燃气锅炉二氧化硫最高允许排放浓度为400mg/m3。

(三)烟尘

天然气是清洁能源,烟尘产生量少,但也不能说没有。

《煤、天然气燃烧的污染物产生系数》一文中指出,每万m3天然气燃烧产生烟尘约为2.4kg。

按这一数据,烟尘浓度约为20-25mg/m3。

《锅炉大气污染物排放标准》规定,燃气锅炉二氧化硫最高允许排放浓度为50mg/m3。

(四)其他污染物

经过计算,天然气燃烧后产生的其他污染物排放当量都更低,本文不再论证。按照《排污收费征收管理条例》,这些污染因子不予征收排污费。

三、征收标准

将上述三个污染因子按低限代入《排污费征收核定表》,则每万立方

米可征收5.22元。如下图所示:

若按高限代入《排污费征收核定表》,则每万立方米可征收5.69元。

燃气锅炉氮氧化物超标。

也就是说,使用天然气作为燃烧的锅炉,每万立方米应征收排污费5-6元。

GB 13271-2014锅炉大气污染物排放标准
篇四:燃气锅炉氮氧化物超标

燃气锅炉氮氧化物超标。

锅炉大气污染物排放标准

GB 13271-2014 代替GB 13271-2001

前言

为贯彻《中华人民共和国环境保护法》、《中华人民共和国大气污染防治法》、《国务院关于加强环境保护重点工作的意见》等法律、法规,保护环境,防治污染,促进锅炉生产、运行和污染治理技术的进步,制定本标准。

本标准规定了锅炉大气污染物浓度排放限值、监测和监控要求。

锅炉排放的水污染物、环境噪声适用相应的国家污染物排放标准,产生固体废物的鉴别、处理和处置适用国家固体废物污染控制标准。

本标准1983年首次发布,1991年第一次修订,1999年和2001年第二次修订,本次为第三次修订。本标准将根据国家社会经济发展状况和环境保护要求适时修订。

此次修订的主要内容:

——增加了燃煤锅炉氮氧化物和汞及其化合物的排放限值; ——规定了大气污染物特别排放限值;

——取消了按功能区和锅炉容量执行不同排放限值的规定; ——取消了燃煤锅炉烟尘初始排放浓度限值; ——提高了各项污染物排放控制要求。

本标准是锅炉大气污染物排放控制的基本要求。地方省级人民政府对本标准未作规定的大气污染物项目,可以制定地方污染物排放标准;对本标准已作规定的大气污染物项目,可以制定严于本标准的地方污染物排放标准。环境影响评价文件要求严于本标准或地方标准时,按照批复的环境影响评价文件执行。

本标准由环境保护部科技标准司组织制订。

本标准起草单位:天津市环境保护科学研究院、中国环境科学研究院。 本标准环境保护部2014年4月28日批准。 新建锅炉自2014年7月1日起、10t/h以上在用蒸汽锅炉和7MW以上在用热水锅炉自2015年10月1日、10t/h以下在用蒸汽锅炉和7MW以下在用热水锅炉自2016年7月1日起执行本标准,《锅炉大气污染物排放标准》(GB 13271-2001)自2016年7月1日废止。各地也可根据当地环境保护的需要和经济与技术条件,由省级人民政府批准提前实施本标准。

本标准由环境保护部解释。

锅炉大气污染物排放标准

1适用范围

本标准规定了锅炉烟气中颗粒物、二氧化硫、氮氧化物、汞及其化合物的最高允许排放浓度限值和烟气黑度限值。

本标准适用于以燃煤、燃油和燃气为燃料的单台出力65t/h及以下蒸汽锅炉、各种容量的热水锅炉及有机热载体锅炉;各种容量的层燃炉、拋煤机炉。

使用型煤、水煤浆、煤矸石、石油焦、油页岩、生物质成型燃料等的锅炉,参照本标准中燃煤锅炉排放控制要求执行。

本标准不适用于以生活垃圾、危险废物为燃料的锅炉。

本标准适用于在用锅炉的大气污染物排放管理,以及锅炉建设项目环境影响评价、环境保护设施设计、竣工环境保护验收及其投产后的大气污染物排放管理。

本标准适用于法律允许的污染物排放行为;新设立污染源的选址和特殊保护区域内现有污染源的管理,按照《中华人民共和国大气污染防治法》、《中华人民共和国水污染防治法》、《中华人民共和国海洋环境保护法》、《中华人民共和国固体废物污染环境防治法》、《中华人民共和国放射性污染防治法》、《中华人民共和国环境影响评价法》等法律、法规、规章的相关规定执行。

2规范性引用文件

本标准内容引用了下列文件或其中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。

GB 5468 锅炉烟尘测试方法

GB/T 16157 固定污染源排气中颗粒物测定与气态污染物采样方法 HJ/T 42 固定污染源排气中氮氧化物的测定 紫外分光光度法 HJ/T 43 固定污染源排气中氮氧化物的测定 盐酸萘乙二胺分光光度法

HJ/T 56 固定污染源排气中二氧化硫的测定 碘量法

HJ/T 57 固定污染源排气中二氧化硫的测定 定电位电解法 HJ/T 373 固定污染源监测质量保证与质量控制技术规范 HJ/T 397 固定源废气监测技术规范

HJ/T 398 固定污染源排放烟气黑度的测定 林格曼烟气黑度图法 HJ 543 固定污染源废气 汞的测定 冷原子吸收分光光度法(暂行)

HJ 629 固定污染源废气 二氧化硫的测定 非分散红外吸收法 HJ 692 固定污染源废气中氮氧化物的测定 非分散红外吸收法 HJ 693 固定污染源废气中氮氧化物的测定 定电位电解法 《污染源自动监控管理办法》(国家环境保护总局令 第28号) 《环境监测管理办法》(国家环境保护总局令 第39号)

3术语和定义

下列术语和定义适用于本标准。 3.1锅炉boiler

锅炉是利用燃料燃烧释放的热能或其它热能加热热水或其他工质,以生产规定参数(温度,压力)和品质的蒸汽、热水或其他工质的设备。 3.2在用锅炉in-use boiler

指本标准实施之日前,已建成投产或环境影响评价文件已通过审批的锅炉。

3.3新建锅炉new boiler

本标准实施之日起,环境影响评价文件通过审批的新建、改建和扩建的锅炉建设项目。

3.4有机热载体锅炉organic fluid boiler

以有机质液体作为热载体工质的锅炉。 3.5标准状态standard condition

锅炉烟气在温度为273K,压力为101325Pa时的状态,简称“标态”。本标准规定的排放浓度均指标准状态下干烟气中的数值。 3.6烟囱高度stack height

指从烟囱(或锅炉房)所在的地平面至烟囱出口的高度。 3.7氧含量O2 content燃气锅炉氮氧化物超标。

燃料燃烧后,烟气中含有的多余的自由氧,通常以干基容积百分数来表示。

3.8重点地区key region

根据环境保护工作的要求,在国土开发密度较高,环境承载能力开始减弱,或大气环境容量较小、生态环境脆弱,容易发生严重大气环境污染问题而需要严格控制大气污染物排放的地区。

3.9大气污染物特别排放限值special limitation for air pollutants

为防治区域性大气污染、改善环境质量、进一步降低大气污染源的排放强度、更加严格地控制排污行为而制定并实施的大气污染物排放限值,该限值的控制水平达到国际先进或领先程度,适用于重点地区。

4大气污染物排放控制要求

4.1 10t/h以上在用蒸汽锅炉和7MW以上在用热水锅炉2015年9月30日前执行GB 13271-2001中规定的排放限值,10t/h及以下在用蒸汽锅炉和7MW及以下在用热水锅炉2016年6月30日前执行GB 13271-2001中规定的排放限值。

4.2 10t/h以上在用蒸汽锅炉和7MW以上在用热水锅炉2015年10月1日起执行表1规定的大气污染物排放限值,10t/h及以下在用蒸汽锅炉和7MW及以下在用热水锅炉2016年7月1日起执行表1规定的大气污染物排放限值。

表1在用锅炉大气污染物排放浓度限值

3注:(1)位于广西壮族自治区、重庆市、四川省和贵州省的燃煤锅炉执行该限值。

4.3自2014年7月1日起,新建锅炉执行表2规定的大气污染物排放限值。燃气锅炉氮氧化物超标。

表2新建锅炉大气污染物排放浓度限值

34.4重点地区锅炉执行表3规定的大气污染物特别排放限值。

执行大气污染物特别排放限值的地域范围、时间,由国务院环境保护主管部门或省级人民政府规定。

表3大气污染物特别排放限值

34.5每个新建燃煤锅炉房只能设一根烟囱,烟囱高度应根据锅炉房装机总容量,按表4

规定执行,燃油、燃气锅炉烟囱不低于8米,锅炉烟囱的具体高度按批复的环境影响评价文件确定。新建锅炉房的烟囱周围半径200m距离内有建筑物时,其烟囱应高出最高建筑物3m以上。

4.6不同时段建设的锅炉,若采用混合方式排放烟气,且选择的监控位置只能监测混合烟气中的大气污染物浓度,应执行各个时段限值中最严格的排放限值。

5大气污染物监测要求

5.1污染物采样与监测要求

5.1.1锅炉使用企业应按照有关法律和《环境监测管理办法》等规定,建立企业监测制度,制定监测方案,对污染物排放状况及其对周边环境质量的影响开展自行监测,保存原始监测记录,并公布监测结果。

5.1.2锅炉使用企业应按照环境监测管理规定和技术规范的要求,设计、建设、维护永久性采样口、采样测试平台和排污口标志。

5.1.3对锅炉排放废气的采样,应根据监测污染物的种类,在规定的污染物排放监控位置进行,有废气处理设施的,应在该设施后监测。排气筒中大气污染物的监测采样按GB 5468、GB/T 16157或HJ/T 397规定执行; 5.1.4 20t/h及以上蒸汽锅炉和14MW及以上热水锅炉应安装污染物排放自动监控设备,与环保部门的监控中心联网,并保证设备正常运行,按有关法律和《污染源自动监控管理办法》的规定执行。

本文来源:http://www.myl5520.com/mingrenmingyan/117072.html

推荐内容