欢迎来到我的范文网!

ac路由器是什么

物理试题 时间:2011-12-11

【www.myl5520.com--物理试题】

无线局域网波束成形技术
篇一:ac路由器是什么

  什么是无线局域网波束成形技术,你知道吗!下面由小编给你做出详细的无线局域网波束成形技术介绍!希望对你有帮助!

  无线局域网波束成形技术:

  近年来,通信运营商竞相提高无线局域网(WLAN)的地位,不仅视其为有线宽带接入的辅助手段,更不吝将其上升到战略高度,提升无线局域网的网络质量和用户体验成为社会关注的焦点。本文主要为您介绍无线局域网关键技术之一——波束成形(Beamforming),包括基本概念和发展趋势。

  无线局域网波束成形技术背景由来:

  波束成形是天线技术与数字信号处理技术的结合,目的用于定向信号传输或接收。波束成形,并非新名词,其实它是一项经典的传统天线技术。早在上世纪60年代就有采用天线分集接收的阵列信号处理技术,在电子对抗、相控阵雷达、声纳等通信设备中得到了高度重视。基于数字波束形成(DBF)的自适应阵列干扰置零技术,能够提高雷达系统的抗干扰能力,是新一代军用雷达必用的关键技术。定位通信系统通过传声器阵列获取声场信息,使用波束成形和功率谱估计原理,对信号进行处理,确定信号来波方向,从而可对信源进行精确定向。只不过,由于早年半导体技术还处在微米级,所以它没有在民用通信中发挥到理想的状态。 www.zhishiwu.com

  而发展到WLAN阶段,特别是应用在个人通信中,信号传输距离和信道质量以及无线通信的抗干扰问题便成为瓶颈。支持高吞吐是WLAN技术发展历程的关键。802.11n主要是结合物理层和MAC层的优化,来充分提高WLAN技术的吞吐。此时,波束成形又有了用武之地。

  无线局域网波束成形技术基本原理:

  波束成形,源于自适应天线的一个概念。接收端的信号处理,可以通过对多天线阵元接收到的各路信号进行加权合成,形成所需的理想信号。从天线方向图 (pattern)视角来看,这样做相当于形成了规定指向上的波束。例如,将原来全方位的接收方向图转换成了有零点、有最大指向的波瓣方向图。同样原理也适用用于发射端。对天线阵元馈电进行幅度和相位调整,可形成所需形状的方向图。

  如果要采用波束成形技术,前提是必须采用多天线系统。例如,多进多出(MIMO),不仅采用多接收天线,还可用多发射天线。由于采用了多组天线,从发射端到接收端无线信号对应同一条空间流(spatial streams),是通过多条路径传输的。在接收端采用一定的算法对多个天线收到信号进行处理,就可以明显改善接收端的信噪比。即使在接收端较远时,也能获得较好的信号质量。

  MIMO可大大提高网络传输速率、覆盖范围和性能。当基于MIMO而同时传递多条独立空间流时,系统的吞吐量可成倍地提高。MIMO系统支持空间流的数量取决于发送天线和接收天线的最小值。如发送天线数量为3,而接收天线数量为2,则支持的空间流为2。在市场上,经历了三年3×3模式的量产磨合期后,今年4X4模式崭露头角,立刻引起了业界重视。

  无线局域网波束成形技术应用举例:

  本文列举一个4x4 三空间流的802.11n 解决方案。

  www.zhishiwu.com

  Marvell 今年发布了支持4x4-3SS Wi-Fi 802.11n 性能的Avastar系列。这将显著提高笔记本、台式电脑、平板电脑、智能手机、电子阅读器、打印机、路由器、机顶盒、高清电视、游戏设备、DVD播放器等性能。它采用波束成形技术后,使1x1- 4x4 MIMO 产品和传统设备之间的链路耐用性大大改善。 以双频接入热点(AP)为例, 它有如下特点:

  性能高达450 Mbps数据率

  支持802.11n 技术规范

  支持802.11ac 技术规范

  由数字信号处理DSP 实现,不要求额外的特殊硬件

  波束成形虽然不是必须支持的,但是有了它,尤其是两端都支持时,增益最大化

  高效的电源管理模块,实现低功耗

  蓝牙技术和面向多种无线共存状态,降低Wi-Fi和蓝牙同时工作的相互干扰

  无线局域网波束成形技术工作过程:

  波束成形的工作过程是怎样的?以热点为例,基站给客户端周期性发送声信号,客户端将信道信息反馈给基站,于是基站可根据信道状态发送导向数据包给客户端。高速的数据计算处理,给出了复形的指示,客户端方向上的增益得以加强,方向图随之整型,相应方向的传输距离也有所增加。AP如果用4组发射天线4x4三组空间流,便能在多天线得到的增益基础上,获取较大的空间分集增益。

  从结构和设置来分,支持802.11n标准的波束成形可分为显性波束成形和隐形波束成形两大类。显性波束成形在AP和客户端均有设置,对增加距离和链路耐用性有很大提高。隐性波束成形的好处是客户端不需要做相应的处理,在设备实现上较为简单,对增加距离和耐用性也有一定帮助。

  以显性波束成形的热点为例, 无线局域网信号传输过程是这样开始的:

  基站与客户端之间需要不断地周期性握手(发送声信号,信道矩阵反馈)

  www.zhishiwu.com

  客户端反馈信道信息给热点

  热点根据信道状态信息发送复形数据包给客户端,加强某客户端方向的强度

  由此获得空间分集增益 + 发射阵列增益(此与发射天线数量有关)

  下图举例说明热点和客户端的工作过程和延伸距离的状况。该图定性地比较了不同 AP提供的不同效果。热点采用4组发射天线,延长了802.11n的传输距离,而采用波束成形,又进一步增加了客户端方向的增益和信号覆盖范围。值得注意的是,随着热点和客户端之间作用距离的增加,波束成形带来的优势越发明显,其动态增长的态势呈非线性递增。

  波束成形技术增加传输距离的示意图

  无线局域网波束成形技术发展趋势:

  随着WLAN的发展,基站的数量需求极大,而且基站安装的成本比较高,在这种情况下,增大覆盖范围,克服无线干扰显得尤为重要。 www.zhishiwu.com

  波束成形并不要求采用特殊的天线,也不增加其它无线子系统,就能在性能上得以提高,而且比其它数字信号处理技术,例如空时分组码(STBC)及低密度奇偶校验码(LDPC)的引入,效益更高,可高出数倍。在家庭和企业的环境下,均可适用。

  WLAN产品支持双频,即2.4GHz 和5GHz,支持20/40 MHz

  空间流从1x1,2x2/2x3, 到2008年的3x3上市,今年的市场上推出4 x4产品

  随着WLAN应用的需求发展,波束成形逐渐有望从供选项成为必选项

  半导体工艺 从2008年的90纳米CMOS进到2010年55纳米, 进而到2011年提升到40纳米

  当前,波束成形也成为了802.11 ac 技术规范的一部分。而对于Wi-Fi认证来说,它仅是一种供选项,并不是必须的。将来是否成为Wi-Fi认证的必要构件,仍有待技术发展的态势而定。事实上,在任何Wi-Fi的设备上都是可以采用波束成形技术的,只不过,这涉及到设备得进行的相应配置。如果在两端均采取对应部署时,它才会真正获得增益最大化。当采用高阶的MIMO时,获取的增益提高会高于低阶的MIMO。例如,4x4的系统总是比2x2的系统具有更大的性能提高空间。

  无线局域网波束成形技术存在问题:

  波束成形技术固然能改善系统性能,增加接收距离,但同时也会增加设备成本和功耗。在多天线都处于连接的状态下,即使在严重的衰落情况下,它提供的信号增益也可获提高,但要求信号处理能力也要很强。所以,多天线带来的问题是要求数据处理速度高,控制成本,并降低功耗。因而,芯片的高集成度高性能和电源管理高效性是至关重要的。一方面要提高吞吐量,同时又要将功耗降到最低。

  小结

  波束成形并不要求采用特殊的天线,也不增加其它无线子系统,就能在性能上得以提高,而且比其它数字信号处理技术,例如空时分组码(STBC)及低密度奇偶校验码(LDPC)的引入,效益更高,可高出数倍。在家庭和企业的环境下,均可适用。

看过“ 无线局域网波束成形技术”人还看了:

什么是网卡
篇二:ac路由器是什么

  关于网卡名称

  计算机与外界局域网的连接是通过主机箱内插入一块网络接口板(或者是在笔记本电脑中插入一块PCMCIA卡)。网络接口板又称为通信适配器或网络适配器(adapter)或网络接口卡NIC(Network Interface Card)但是现在更多的人愿意使用更为简单的名称“网卡”。

  [编辑本段]网卡功能简述

  网卡是工作在数据链路层的网路组件,是局域网中连接计算机和传输介质的接口,不仅能实现与局域网传输介质之间的物理连接和电信号匹配,还涉及帧的发送与接收、帧的封装与拆封、介质访问控制、数据的编码与解码以及数据缓存的功能等。

  [编辑本段]网卡功能详解

  网卡上面装有处理器和存储器(包括RAM和ROM)。网卡和局域网之间的通信是通过电缆或双绞线以串行传输方式进行的。而网卡和计算机之间的通信则是通过计算机主板上的I/O总线以并行传输方式进行。因此,网卡的一个重要功能就是要进行串行/并行转换。由于网络上的数据率和计算机总线上的数据率并不相同,因此在网卡中必须装有对数据进行缓存的存储芯片。

  在安装网卡时必须将管理网卡的设备驱动程序安装在计算机的操作系统中。这个驱动程序以后就会告诉网卡,应当从存储器的什么位置上将局域网传送过来的数据块存储下来。网卡还要能够实现以太网协议。

  网卡并不是独立的自治单元,因为网卡本身不带电源而是必须使用所插入的计算机的电源,并受该计算机的控制。因此网卡可看成为一个半自治的单元。当网卡收到一个有差错的帧时,它就将这个帧丢弃而不必通知它所插入的计算机。当网卡收到一个正确的帧时,它就使用中断来通知该计算机并交付给协议栈中的网络层。当计算机要发送一个IP数据报时,它就由协议栈向下交给网卡组装成帧后发送到局域网。

  随着集成度的不断提高,网卡上的芯片的个数不断的减少,虽然现在个厂家生产的网卡种类繁多,但其功能大同小异。网卡的主要功能有以下三个:

  1.数据的封装与解封:发送时将上一层交下来的数据加上首部和尾部,成为以太网的帧。接收时将以太网的帧剥去首部和尾部,然后送交上一层;

  2.链路管理:主要是CSMA/CD协议的实现;

  3.编码与译码:即曼彻斯特编码与译码。

  [编辑本段]选购网卡时考虑的因素

  在组装时是否能正确选用、连接和设置网卡,往往是能否正确连通网络的前提和必要条件。一般来说,在选购网卡时要考虑以下因素:

  网络类型:现在比较流行的有以太网,令牌环网,FDDI网等,选择时应根据网络的类型来选择相对应的网卡。

  传输速率:应根据服务器或工作站的带宽需求并结合物理传输介质所能提供的最大传输速率来选择网卡的传输速率。以以太网为例,可选择的速率就有10Mbps,10/100Mbps,1000Mbps,甚至10Gbps等多种,但不是速率越高就越合适。例如,为连接在只具备100M传输速度的双绞线上的计算机配置1000M的网卡就是一种浪费,因为其至多也只能实现100M的传输速率。

  总线类型:计算机中常见的总线插槽类型有:ISA、EISA、VESA、PCI 和 PCMCIA等。在服务器上通常使用PCI或EISA总线的智能型网卡,工作站则采用可用PCI或ISA总线的普通网卡,在笔记本电脑则用PCMCIA总线的网卡或采用并行接口的便携式网卡。目前PC机基本上已不再支持ISA连接,所以当为自己的PC机购买网卡时,千万不要选购已经过时的ISA网卡,而应当选购PCI网卡。

  网卡支持的电缆接口:网卡最终是要与网络进行连接,所以也就必须有一个接口使网线通过它与其它计算机网络设备连接起来。不同的网络接口适用于不同的网络类型,目前常见的接口主要有以太网的RJ-45接口、细同轴电缆的BNC接口和粗同轴电AUI接口、FDDI接口、ATM接口等。而且有的网卡为了适用于更广泛的应用环境,提供了两种或多种类型的接口,如有的网卡会同时提供RJ-45、BNC接口或AUI接口。

  (a)RJ-45接口:这是最为常见的一种网卡,也是应用最广的一种接口类型网卡,这主要得益于双绞线以太网应用的普及。因为这种RJ-45接口类型的网卡就是应用于以双绞线为传输介质的以太网中,它的接口类似于常见的电话接口RJ-11,但RJ-45是8芯线,而电话线的接口是4芯的,通常只接2芯线(ISDN的电话线接4芯线)。在网卡上还自带两个状态批示灯,通过这两个指示灯颜色可初步判断网卡的工作状态。

  (b)BNC接口:这种接口网卡对应用于用细同轴电缆为传输介质的以太网或令牌网中,目前这种接口类型的网卡较少见,主要因为用细同轴电缆作为传输介质的网络就比较少。

  (c)AUI接口:这种接口类型的网卡对应用于以粗同轴电缆为传输介质的以太网或令牌网中,这种接口类型的网卡目前更是很少见。

  (d)FDDI接口:这种接口的网卡是适应于FDDI(光纤分布数据接口)网络中,这种网络具有100Mbps的带宽,但它所使用的传输介质是光纤,所以这种FDDI接口网卡的接口也是光纤接口的。随着快速以太网的出现,它的速度优越性已不复存在,但它须采用昂贵的光纤作为传输介质的缺点并没有改变,所以目前也非常少见。

  (e)ATM接口:这种接口类型的网卡是应用于ATM(异步传输模式)光纤(或双绞线)网络中。它能提供物理的传输速度达155Mbps

  价格与品牌:不同速率、不同品牌的网卡价格差别较大。

  [编辑本段]网卡其他知识

  (1)网卡:判断网络故障的命令

  Ping命令是测试网络联接状况以及信息包发送和接收状况非常有用的工具,是网络测试最常用的命令。Ping向目标主机(地址)发送一个回送请求数据包,要求目标主机收到请求后给予答复,从而判断网络的响应时间和本机是否与目标主机(地址)联通。

  如果执行Ping不成功,则可以预测故障出现在以下几个方面:网线故障,网络适配器配置不正确,IP地址不正确。如果执行Ping成功而网络仍无法使用,那么问题很可能出在网络系统的软件配置方面,Ping成功只能保证本机与目标主机间存在一条连通的物理路径。

  命令格式:ping IP地址或主机名 [-t] [-a] [-n count] [-l size]

  参数含义:

  -t不停地向目标主机发送数据;

  -a 以IP地址格式来显示目标主机的网络地址 ;

  -n count 指定要Ping多少次,具体次数由count来指定 ;

  -l size 指定发送到目标主机的数据包的大小。

  例如当您的机器不能访问Internet,首先您想确认是否是本地局域网的故障。假定局域网的代理服务器IP地址为202.168.0.1,您可以使用Ping避免202.168.0.1命令查看本机是否和代理服务器联通。又如,测试本机的网卡是否正确安装的常用命令是ping 127.0.0.1。

  Tracert命令用来显示数据包到达目标主机所经过的路径,并显示到达每个节点的时间。命令功能同Ping类似,但它所获得的信息要比Ping命令详细得多,它把数据包所走的全部路径、节点的IP以及花费的时间都显示出来。该命令比较适用于大型网络。

  命令格式:tracert IP地址或主机名 [-d][-h maximumhops][-j host_list] [-w timeout]

  参数含义:

  -d 不解析目标主机的名字;

  -h maximum_hops 指定搜索到目标地址的最大跳跃数;

  -j host_list 按照主机列表中的地址释放源路由;

  -w timeout 指定超时时间间隔,程序默认的时间单位是毫秒。

  如果我们在Tracert命令后面加上一些参数,还可以检测到其他更详细的信息,例如使用参数-d,可以指定程序在跟踪主机的路径信息时,同时也解析目标主机的域名。

  Netstat命令可以帮助网络管理员了解网络的整体使用情况。它可以显示当前正在活动的网络连接的详细信息,例如显示网络连接、路由表和网络接口信息,可以统计目前总共有哪些网络连接正在运行。

  利用命令参数,命令可以显示所有协议的使用状态,这些协议包括TCP协议、UDP协议以及IP协议等,另外还可以选择特定的协议并查看其具体信息,还能显示所有主机的端口号以及当前主机的详细路由信息。

  命令格式:netstat [-r] [-s] [-n] [-a]

  参数含义:

  -r 显示本机路由表的内容;

  -s 显示每个协议的使用状态(包括TCP协议、UDP协议、IP协议);

  -n 以数字表格形式显示地址和端口;

  -a 显示所有主机的端口号。

  winipcfg命令以窗口的形式显示IP协议的具体配置信息,命令可以显示网络适配器的物理地址、主机的IP地址、子网掩码以及默认网关等,还可以查看主机名、DNS服务器、节点类型等相关信息。其中网络适配器的物理地址在检测网络错误时非常有用。

  命令格式:winipcfg [/?] [/all]

  参数含义:

  /all 显示所有的有关IP地址的配置信息;

  /batch [file] 将命令结果写入指定文件;

  /renew_ all 重试所有网络适配器;

  /release_all 释放所有网络适配器;

  /renew N 复位网络适配器 N;

  /release N 释放网络适配器 N。

  (2)网卡:LED指示灯

  一般来讲,每块网卡都具有1个以上的LED(Light Emitting Diode发光二极管)指示灯,用来表示网卡的不同工作状态,以方便我们查看网卡是否工作正常。典型的LED指示灯有Link/Act、Full、Power等。Link/Act表示连接活动状态,Full表示是否全双工(Full Duplex),而Power是电源指示等。

  (3)网卡:主芯片

  网卡的主控制芯片是网卡的核心元件,一块网卡性能的好坏,主要是看这块芯片的质量。网卡的主控制芯片一般采用3.3V的低耗能设计、0.35μm的芯片工艺,这使得它能快速计算流经网卡的数据,从而减轻cpu的负担。以下是目前常用的网卡控制芯片。

  1、Realtek 8201BL:是一种常见的主板集成网络芯片(又称为PHY网络芯片)。PHY芯片是指将网络控制芯片的运算部分交由处理器或南桥芯片处理,以简化线路设计,从而降低成本。

  2、Realtek 8139C/D:是目前使用最多的网卡之一。8139D主要增加了电源管理功能,其他则基本上与8139C芯片无异。该芯片支持10M/100Mbps。

  3、lntel Pro/100VE:lntel公司的入门级网络芯片。

  4、nForce MCP NVIDIA/3Com:nForce2内置了两组网络芯片功能,Realtek 8210BL PHY网络芯片和Broabcom AC101L PHY网络芯片。

  5、3Com 905C:C支持10/100Mbps速度。

  6、SiS900:原本是单一的网络控制芯片,但现在已经集成到南桥芯片中。支持100Mbps。

  (4)网卡:远程唤醒功能

  远程唤醒技术(WOL,Wake-on-LAN)是由网卡配合其他软硬件,可以通过局域网实现远程开机的一种技术,无论被访问的计算机离我们有多远、处于什么位置,只要处于同一局域网内,就都能够被随时启动。这种技术非常适合具有远程网络管理要求的环境,如果有这种要求在选购网卡时应注意是否具有此功能。

  可被远程唤醒的计算机对硬件有一定的要求,主要表现在网卡、主板和电源上。

  a.网卡:能否实现远程唤醒,其中最主要的一个部件就是支持WOL的网卡。远端被唤醒计算机的网卡必须支持WOL,而用于唤醒其他计算机的网卡则不必支持WOL。另外,当一台计算机中安装有多块网卡时,只将其中的一块设置为可远程唤醒。

  b.主板:也必需支持远程唤醒,可通过查看CMOS的“Power Management Setup”菜单中是否拥有“Wake on LAN”项而确认。另外,支持远程唤醒的主板上通常都拥有一个专门的3芯插座,以给网卡供电(PCI2.1标准)。 由于现在的主板通常支持PCI 2.2标准,可以直接通过PCI插槽向网卡提供+3.3V Standby电源,即使不连接WOL电源线也一样能够实现远程唤醒,因此,可能不再提供3芯插座。主板是否支持PCI2.2标准,可通过查看CMOS的“Power Management Setup”菜单中是否拥有“Wake on PCI Card”项来确认。

  c.电源:若欲实现远程唤醒,计算机安装的必须是符合ATX 2.01标准的ATX电源,+5V Standby电流至少应在600mA以上。

  [编辑本段]无线网卡

  无线网卡定义所谓无线网络,就是利用无线电波作为信息传输的媒介构成的无线局域网(WLAN),与有线网络的用途十分类似,最大的不同在于传输媒介的不同,利用无线电技术取代网线,可以和有线网络互为备份,只可惜速度太慢。

  无线网卡是终端无线网络的设备,是无线局域网的无线覆盖下通过无线连接网络进行上网使用的无线终端设备。具体来说无线网卡就是使你的电脑可以利用无线来上网的一个装置,但是有了无线网卡也还需要一个可以连接的无线网络,如果你在家里或者所在地有无线路由器或者无线AP(AccessPoint无线接入点)的覆盖,就可以通过无线网卡以无线的方式连接无线网络可上网。

  无线网卡的工作原理是微波射频技术,笔记本目前有WIFI、GPRS、CDMA等几种无线数据传输模式来上网,后两者由中国移动和中国联通来实现,前者电信或网通有所参与,但不多主要是自己拥有接入互联网的WIFI基站(其实就是WIFI路由器等)和笔记本用的WIFI网卡。要说基本概念是差不多的,通过无线形式进行数据传输。无线上网遵循802.1q标准,通过无线传输,有无线接入点发出信号,用无线网卡接受和发送数据。

  按照IEEE802.11协议,无线局域网卡分为媒体访问控制(MAC)层和物理层(PHY Layer)在两者之间,还定义了一个媒体访问控制-物理(MAC-PHY)子层(Sublayers)。MAC层提供主机与物理层之间的接口,并管理外部存储器,它与无线网卡硬件的NIC单元相对应。

  物理层具体实现无线电信号的接收与发射,它与无线网卡硬件中的扩频通信机相对应。物理层提供空闲信道估计CCA信息给MAC层,以便决定是否可以发送信号,通过MAC层的控制来实现无线网络的CCSMA/CA协议,而MAC-PHY子层主要实现数据的打包与拆包,把必要的控制信息放在数据包的前面。

  IEEE802.11协议指出,物理层必须有至少一种提供空闲信道估计CCA信号的方法。无线网卡的工作原理如下:当物理层接收到信号并确认无错后提交给MAC-PHY子层,经过拆包后把数据上交MAC层,然后判断是否是发给本网卡的数据,若是,则上交,否则,丢弃。

  如果物理层接收到的发给本网卡的信号有错,则需要通知发送端重发此包信息。当网卡有数据需要发送时,首先要判断信道是否空闲。若空,随机退避一段时间后发送,否则,暂不发送。由于网卡为时分双工工作,所以,发送时不能接收,接收时不能发。

  [编辑本段]网卡的发展史

  网卡:(NIC)是计算机局域网中最重要的连接设备,计算机主要通过网卡连接网络.在网络中,网卡的工作是双重的:一方面它负责接收网络上传过来的数据包,解包后,将数据通过主板上的总线传输给本地计算机;另一方面它将本地计算机上的数据打包后送入网络。

  ·计算机网络:是计算机技术和通信技术发展的产物,是随着社会对信息共享、信息传递的要求而发展起来的。所谓计算机网络就是利用通信设备和线路将地理位置不同的、功能独立的多个计算机系统互连起来,以功能完善的网络软件(即网络通信协议、信息交换方式及网络操作系统等)实现网络中资源共享和信息传递的系统。

  ·计算机网络组成:通常由三部分组成,即资源子网、通信子网和通信协议。

  资源子网:是计算机网络中面向用户的部分,负责全网络面向应用的数据处理工作,其主体是连入计算机网络内的所有主计算机,以及这些计算机所拥有的面向用户端的外部设备、软件和可供共享的数据等。

  通信子网:四计算机网络中负责数据通信的部分,通信传输介质可以是双绞线、同轴电缆、无线电通信、微波、光导纤维等。

  通信协议:为使网内各计算机之间的通信可靠有效,通信双方双方必须共同遵守的规则和约定称为通信协议。

  ·资源共享:包括硬件和软件资源。硬件资源如具有特殊功能的高性能处理部件,高性能的输入输出设备(激光打印机、绘图仪等)以及大容量的辅助存储设备(如磁带机、大容量硬盘驱动器等),它们的共享可以节省硬件开销。软件资源如软件和数据。

  ·局域网:是一个通讯系统,他允许数台彼此独立的电脑,在适当的范围内,以适当的传输速率直接进行沟通。一般网络可依其规模来分类,通常我们在办公室或家中使用的,大都属于局域网,这种网络由于电脑间的距离短,且不必经过太多网络设备的中继,所以感觉上速度较快,但也因此适用范围较小。

  ·广域网(WAN)Wide Area Network:和局域网相对,凡超过局域网范围的,都可以算为广域网。

  ·城域网(MAN)Metropolitan ARea Network:在一个城市范围内操作的网络,或者在物理上使用城市基础电信设施(如地下电缆系统)的网络,有时从WAN中区分出来,称为城域网。

  ·网络体系结构:是指通信系统的整体设计,它为网络硬件、软件、协议、存取控制和拓扑提供标准。它广泛采用的是国际标准化组织(ISO)在1979年提出的开放系统互连(OSI-Open System Interconnection)的参考模型。OSI参考模型用物理层、数据链路层、网络层、传送层、对话层、表示层和应用层七个层次描述网络的结构,它的规范对所有的厂商是开放的,具有知道国际网络结构和开放系统走向的作用。它直接影响总线、接口和网络的性能。目前常见的网络体系结构有FDDI、以太网、令牌环网和快速以太网等。从网络互连的角度看,网络体系结构的关键要素是协议和拓扑。

  ·协议(Protocol):是对数据格式和计算机之间交换数据时必须遵守的规则的正式描述。简单的说了,网络中的计算机要能够互相顺利的通信,就必须讲同样的语言,语言就相当于协议,它分为Ethernet、NetBEUI、IPX/SPX以及TCP/IP协议。

  ·拓扑结构:是指网络中各个站点相互连接的形式,主要有总线型拓扑、星型拓扑、环型拓扑以及它们的混合型。

  ·FDDI/CDDI:由美国国家标准协会ANSI的X3T9.5制定。速率为100Mbps;CDDI是基于铜电缆(双绞线)的FDDI。FDDI技术成熟,网络可延伸100公里,且由于采用环形结构和优良的管理能力,具有高可靠性。价格贵,安装复杂,标准完善,技术成熟,支持的软硬件产品丰富。

  ·IEEE802.5/令牌环网:常用于IBM系统中,其支持的速率为4Mbps和16Mbps两种。目前Novell、IBM LAN Server支持16MbpsIEEE802.5/令牌环网技术。

  ·交换以太网:其支持的协议仍然是IEEE802.3/以太网,但提供多个单独的 10Mbps端口。它与原来的IEEE802.3/以太网完全兼容,并且克服了共享10Mbps带来的网络效率下降。

  ·100BASE-T快速以太网:与10BASE-T的区别在于将网络的速率提高了十倍,即100M。采用了FDDI的PMD协议,但价格比FDDI便宜。100BASE-T的标准由IEEE802.3制定。与10BASE-T采用相同的媒体访问技术、类似的步线规则和相同的引出线,易于与10BASE-T集成。每个网段只允许两个中继器,最大网络跨度为210米。

  ·IEEE802.3/Ethernet(以太网):目前最广泛的媒体访问技术,通常在OSI模型的物理层和数据链路层操作。是Novell、Widows NT、 IBM、UNIX网络 LANServer、DECNET等低层所采用的主要媒体访问技术,组网方式灵活、方便、且支持的软硬件产品众多。其速率为共享型10Mbps。根据不同的媒体可分为:10BASE-2(同轴粗缆)、10BASE-5(同轴细缆)、10BASE-T(双绞线)及10BASE-FL(光纤)。

  ·NETBIOS/NETBEUI:NETBIOS是局域网软件接口的工业标准,可支持多种传输媒体。NETBEUI是NETBIOS的扩展用户接口,为Microaoft windows NT和IBM的LAN Manager所采用。NETBIOS研制较早,比较简单,未考虑网间互连的情况,其命名方案不适合多种操作系统。

  ·IPX/SPX:NOVELL网的主要协议。目前,支持IPX/SPX的软硬件,I/O设备很多。OSI参考模型中,相当于第三、四层(网络层、传输层)的。NOVELL网中,可在IPX上加载IP协议NETBIOS协议。

  ·TCP/IP:IP在UNIX中广泛配置,成为事实上的国际工业标准。IP也是Internet的主要协议。IP协议可横跨局域网、广域网,几乎所有局域网、广域网设备均支持IP协议,是统一媒体传输方式的最佳协议。IP协议为数据类协议,其传输的响应时间较好,协议交互少,较适合高速传输的需要。

  ·总线型拓扑:采用单根传输线作为传输介质,所有的站点都通过相应的硬件接口直接连接到干线电缆即总线上。

  ·星型拓扑:所有站点都连接到一个中心点,此中心点称作网络的集线器(HUB)。

  ·环型拓扑:所有站点彼此串行连接,就象链子一样,构成一个回路或称作环。

  ·混合型拓扑:在居域网之间互连后,会出现某几种拓扑结构的混合形式,即混合型拓扑。

  ·传输介质:是通信网络中发送方和接受方之间的物理通路,目前常用的网络传输介质有双绞线、同轴电缆和光缆等。

  ·双绞线:是综合布线系统中最常用的一种传输介质,尤其在星型网络拓扑中,双绞线是必不可少的布线材料。双绞线电缆中封装着一对或一对以上的双绞线,为了降低信号的干扰程度,为了降低信号的干扰程度,每一对双绞线一般由两根绝缘铜导线相互缠绕而成。双绞线可分为非屏蔽双绞线(UTP)和屏蔽双绞线(STP)两大类。其中,STP又分为3类和5类两种,而UTP分为3类、4类、5类、超5类四种,同时,6类和7类双绞线也会在不远的将来运用于计算机网络的布线系统。

  ·RJ-45接头:每条双绞线两头通过安装RJ-45连接器(俗称水晶头)与网卡和集线器(或交换机)相连。

  ·同轴电缆:是由一根空心的圆柱网状铜导体和一根位于中心轴线的铜导线组成,铜导线、空心圆柱导体和外界之间用绝缘材料隔开。与双绞线相比,同轴电缆的抗干扰能力强,屏蔽性能好,所以常用于设备与设备之间的连接,或用于总线型网络拓扑中。根据直径的不同,又可分为细缆和粗缆两种。

  ·BNC接头:细缆两端安装BNC连接头,通过专用T型连接器与网卡和集线器(或交换机)相连。

  ·光纤:光纤即光导纤维,是一种细小、柔韧并能传输光信号的介质,光缆由多条光纤组成。与双绞线和同轴电缆相比,光缆适应了目前网络对长距离传输大容量信息的要求,在计算机网络中发挥着十分重要的作用。

  ·半双工:它的意思是虽然网卡可以接收发送数据,但是一次只能做一种动作,不能同时收发。

  ·全双工:就是能够"同时"接收与发送信号,譬如电话就是一种全双工传输设备,我们在听对方讲话的同时,也可以发话给对方。理论上,全双工传输可以提高网络效率,但是实际上仍是配合其他相关设备才有用。例如必须选用双绞线的网络缆线才可以全双工传输,而且中间所接的集线器(HUB),也要能全双工传输;最后,所采用的网络操作系统也得支持全双工作业,如此才能真正发挥全双工传输的威力。

  ·Programmed I/O:这是从早期使用迄今,行之有效的传输方式,当年NOVELL公司风靡全球的NE 2000网卡便是采用这种方式。这种传输方式传输效率不容易提高,一旦遇到大量数据的情况便成了传输的瓶颈。

  ·Shared Memory:这类的网卡把要传输的数据放到卡上的存储器,而这块存储器必须事先占用一端地址(大多数占用640-1024KB之间的地址),有了这个地址,这块存储器就可视为主机板存储器的一部分:当主机向网卡要数据时,便直接到这块存储器取回;反之,将数据放到存储器也等于是传给了网卡。如果将PROGRAMMED I/O方式比喻成用勺子舀水,那SHARED MEMORY便是以桶打水,在传输量多时更能突出它的效率。

  ·Bus Master:这类网卡上有一片控制芯片(CONTROLLER),专门用来管制整个传输过程及总线的使用,由于控制动作由这片芯片代劳,数据可以直接从网卡传给主机板,不必I/O PROT,也不必经过CPU。由于不占用CPU宝贵的时间,能有效减低系统的负担,因此特别适用在服务器上。多数EISA、MCA、PCI接口的网卡都支持用这种BUS MASTER方式与主机板沟通。

  ·802.3x流控制:由于数据传输更有效而提高了性能。网卡通过与交换机通信来确立最佳的数据传输。

  ·Parallel Tasking技术:3COM公司专利技术,此技术能够在10Mbps 或100 Mbps连接时使数据传输速度最高 。

  ·Parallel Tasking II技术:3COM公司专利技术,此技术能够降低CPU占用率,还由于数据更有效在PCI总线上传输而提高了应用性能 。在过去,在一个总线主操作周期里网卡至多每次只让64字节的数据在PCI总线上传输。为了把一个1514 字节的数据包全部传输到PC主机, 就需要24个单独的总线主操作周期,这使总线的效率很低。有了Parallel Tasking II技术之 后,网卡就能够在一个总线主操作周期里在总线上传输整个Ethernet数据包,这极大地提高 了PCI总线的效率。其结果是加快了传输速度并改善了系统性能,使台式机和服务器的应用软 件工作得更好。

  ·32位总线主控DMA:宽数据通路和高速传输以及低的CPU占用率提供了最佳的系统性能。

  ·交互式访问技术:网卡可以动态分析网络信息流,进而调整网络性能。

  ·远程唤醒:使网络管理人员可以在中心地点命令远程PC通电,便于在下班时间更新和维护台式机(PC主板必须装有3脚的远程唤醒连接器;还要求配备Desktop Management Application 软件,该软件能产生Magic Packet TM远程唤醒信号) 。

  ·DMI2.0:使远程PC能够记录和报告PC的状态,以改善桌面管理 。

  ·3Com DynamicAccess 软件:是3Com Fast EtherLink XL系列的有机组成部分,为网卡增加各种智能。它包括1、通过服务类别来区分数据流的优先级。为时间要求高的数据分配高优先级,以改善多媒体和关键性商业应用的性能;2、分布式RMON(dRMON)SmartAgent TM软件。 该软件能在交换型和高速的网络环境中提供全面的廉价的网络管理,其中包括支持所有类别的远程监控;3、Fast IP软件。该软件最大限度地缓解了路由器可能产生的各种瓶颈,从而提高了网间互联性能;4、有效的多点播控制。这种控制能够在多点播数据流充斥LAN之前自动滤除不必要的多点播流,从而扩大了网络的有用带宽。

  ·100VG-ANYLAN:由HP,AT&T组织开发,由IEEE802.12制定标准。其优点为可以基于目前的三类8芯双绞线组网,且支持优先调度,适合传送多媒体信息,价格便宜。缺点是标准不成熟、缺乏容错功能的主干,保密性有限,且支持产品较少。

  ·ATM:高速的基于分组的网络,是未来信息高速公路的主要通信传输手段。ATM标准有ATM论坛制定(150多个国家参加)。基于53个字节的信元进行数据交换,速率可达25M、34M、45M、50M、155M、622M,并可达数Gbps。ATM支持产品越来越多,但价格较高。

  发展历史:

  80年代,随着微机技术的发展,微机居域网技术和产品获得迅速的发展。80年代末期,国外微机界已预言,90年代微机使用的环境就是网络。事实上确实如此,微机居域网的发展在整个计算机网络领域中具有相当大的影响,数以千计的微机网络用户分布在各个应用领域中促进了网络应用技术的发展,从而也加速微机网络技术的发展。

  过去一直是国外微机居域网产品占据着网络市场,其中建网用户数占先的主要有NOVELL、3COM、IBM、BANYAN以及SUN等公司的产品。随着网络的发展,台湾的厂商以生产能力强且多在内地设厂等优势,也迅速的发展起来,象D-LINK,TP-LINK等品牌逐渐走向成熟,另外国内的计算机产品生产商如实达、联想也纷纷生产出各自的网络产品。

  其实网卡的发展史也就是网络的发展史.....

  网卡杂谈:

  网卡的不同分类:根据工作对象的不同务器的工作特点而专门设计的,价格较贵,但性能很好。就兼容网卡而言,目前,网卡一般分为普通工作站网卡和服务器专用网卡。服务器专用网卡是为了适应网络服种类较多,性能也有差异,可按以下的标准进行分类:按网卡所支持带宽的不同可分为10M网卡、100M网卡、10/100M自适应网卡、1000M网卡几种;根据网卡总线类型的不同,主要分为ISA网卡、EISA网卡和PCI网卡三大类,其中ISA网卡和PCI网卡较常使用。ISA总线网卡的带宽一般为10M,PCI总线网卡的带宽从10M到1000M都有。同样是10M网卡,因为ISA总线为16位,而PCI总线为32位,所以PCI网卡要比ISA网卡快。

  网卡的接口类型:根据传输介质的不同,网卡出现了AUI接口(粗缆接口)、BNC接口(细缆接口)和RJ-45接口(双绞线接口)三种接口类型。所以在选用网卡时,应注意网卡所支持的接口类型,否则可能不适用于你的网络。市面上常见的10M网卡主要有单口网卡(RJ-45接口或BNC接口)和双口网卡(RJ-45和BNC两种接口),带有AUI粗缆接口的网卡较少。而100M和1000M网卡一般为单口卡(RJ-45接口)。除网卡的接口外,我们在选用网卡时还常常要注意网卡是否支持无盘启动。必要时还要考虑网卡是否支持光纤连接。

  网卡的选购:据统计,目前绝大多数的局域网采用以太网技术,因而重点以以太网网卡为例,讲一些选购网卡时应注意的问题。购买时应注意以下几个重点:

  网卡的应用领域----目前,以太网网卡有10M、100M、10M/100M及千兆网卡。对于大数据量网络来说,服务器应该采用千兆以太网网卡,这种网卡多用于服务器与交换机之间的连接,以提高整体系统的响应速率。而10M、100M和10M/100M网卡则属人们经常购买且常用的网络设备,这三种产品的价格相差不大。所谓10M/100M自适应是指网卡可以与远端网络设备(集线器或交换机)自动协商,确定当前的可用速率是10M还是100M。对于通常的文件共享等应用来说,10M网卡就已经足够了,但对于将来可能的语音和视频等应用来说,100M网卡将更利于实时应用的传输。鉴于10M技术已经拥有的基础(如以前的集线器和交换机等),通常的变通方法是购买10M/100M网卡,这样既有利于保护已有的投资,又有利于网络的进一步扩展。就整体价格和技术发展而言,千兆以太网到桌面机尚需时日,但10M的时代已经逐渐远去。因而对中小企业来说,10M/100M网卡应该是采购时的首选。

  注意总线接口方式----当前台式机和笔记本电脑中常见的总线接口方式都可以从主流网卡厂商那里找到适用的产品。但值得注意的是,市场上很难找到ISA接口的100M网卡。1994年以来,PCI总线架构日益成为网卡的首选总线,目前已牢固地确立了在服务器和高端桌面机中的地位。即将到来的转变是这种网卡将推广到所有的桌面机中。PCI以太网网卡的高性能、易用性和增强了的可靠性使其被标准以太网网络所广泛采用,并得到了PC业界的支持。

  网卡兼容性和运用的技术----快速以太网在桌面一级普遍采用100BaseTX技术,以UTP为传输介质,因此,快速以太网的网卡设一个RJ45接口。由于小办公室网络普遍采用双绞线作为网络的传输介质,并进行结构化布线,因此,选择单一RJ45接口的网卡就可以了。适用性好的网卡应通过各主流操作系统的认证,至少具备如下操作系统的驱动程序:Windows、Netware、Unix和OS/2。智能网卡上自带处理器或带有专门设计的AISC芯片,可承担使用非智能网卡时由计算机处理器承担的一部分任务,因而即使在网络信息流量很大时,也极少占用计算机的内存和CPU时间。智能网卡性能好,价格也较高,主要用在服务器上。另外,有的网卡在BootROM上做文章,加入防病毒功能;有的网卡则与主机板配合,借助一定的软件,实现Wake?on?LAN(远程唤醒)功能,可以通过网络远程启动计算机;还有的计算机则干脆将网卡集成到了主机板上。

  网卡生产商----由于网卡技术的成熟性,目前生产以太网网卡的厂商除了国外的3Com、英特尔和IBM等公司之外,台湾的厂商以生产能力强且多在内地设厂等优势,其价格相对比较便宜。

  [1]常见的网卡品牌介绍

  Intel

  Intel是个老品牌了,早期的台式机有很多都采用Intel的入门级网卡产品——lntel Pro/100VE。在AMD还没与Intel形成明显的竞争关系之前,这个网卡在市场中很常见,后来Intel又推出了Pro 10/100、Pro 100/1000,后两个产品现在大多集成到Intel自主品牌的主板中,DIY市场已经不多见了。 8254X系列,这个系列是早期的千兆芯片了,照7X系列的性能要差一些,目前仍用在低端千兆网卡产品中。

  Realtek

  Realtek,中文叫做瑞昱,这个品牌可谓是家喻户晓。瑞昱半导体成立于1987年,位于台湾“硅谷”的新竹科学园区,旗下的网卡芯片和声卡芯片被广泛运用于台式电脑之中,它凭借成熟的技术和低廉的价格,走红与DIY市场,是许多带有集成网卡、声卡的主板的首选。尤其是8139D网卡芯片,在市场上占有绝对的优势。 千兆芯片则有8110S、8110SB、8110SC,高端一点的有8169S、8169SB和8169SC。如果你的主板集成了千兆网卡,你就可以看看芯片表面来判断是Realtek的哪个千兆芯片。

  Broadcom

  Broadcom公司创立于1991年,是世界上最大的无生产线半导体公司之一,总部位于美国加利福尼亚州的尔湾。08年3月份收购了光驱技术供应商Sunext Design。 NetLink 440X系列,这个系列可以说是与Realtek 8139最有竞争力的网卡芯片,其市场份额也不小,一部分品牌机和独立网卡都采用了这个芯片,它的驱动非常完善,支持大部分操作系统。 NetLink 57XX系列,这个系列都是千兆芯片了,其中有5781、5786、5787、5788、5789,市面上千兆网卡中也能经常见到57XX系列的芯片。一些笔记本电脑配备的千兆网卡也有很多采用了57XX系列芯片。 在有线芯片方面,Atheros只有两款千兆产品——AR8021和AR8216。8021就是一个标准的千兆网卡芯片,没有什么特点可言。8216在8021的基础上增加了对802.1p的支持,加入Qos系统,支持IPv6和VLAN功能。

  VIA和SIS

  SIS的网卡芯片一般只出现在采用了SIS芯片组的主板上,独立网卡市场几乎销声匿迹。由于SIS官方网站上只有SIS900,所以其他型号的网卡驱动都是主板厂商直接提供,如果你的网卡是SIS的芯片,在下载驱动程序时去主板厂商的网站找会更方便。接下来看VIA。VIA的网卡芯片曾经有过一段辉煌的历史,当时8000系列的板载网卡芯片非常流行,许多大的主板厂商都采用其网络芯片,后来由于Realtek发展壮大,其产品就被人们所遗忘。加上VIA主板芯片组的地位被nVIDIA取代,就更没有人去注意VIA的网络芯片了。 但是现在仍然能够看到VIA的主板芯片组和网卡芯片。VT8231是一个经典的网卡芯片型号,它是标准的百兆网卡芯片,采用传统、成熟的技术制作而成,缺点就是稳定性不好。

什么是静态路由 静态路由的优缺点
篇三:ac路由器是什么

  静态路由是指由用户或网络管理员手工配置的路由信息。那么你对静态路由了解多少呢?以下是由小编整理关于什么是静态路由的内容,希望大家喜欢!

  静态路由的简介

  静态路由是指由用户或网络管理员手工配置的路由信息。当网络的拓扑结构或链路的状态发生变化时,网络管理员需要手工去修改路由表中相关的静态路由信息。静态路由信息在缺省情况下是私有的,不会传递给其他的路由器。当然,网管员也可以通过对路由器进行设置使之成为共享的。静态路由一般适用于比较简单的网络环境,在这样的环境中,网络管理员易于清楚地了解网络的拓扑结构,便于设置正确的路由信息。

  在一个支持DDR(Dial-on-Demand Routing)的网络中,拨号链路只在需要时才拨通,因此不能为动态路由信息表提供路由信息的变更情况。在这种情况下,网络也适合使用静态路由。

  静态路由的优点

  使用静态路由的另一个好处是网络安全保密性高。动态路由因为需要路由器之间频繁地交换各自的路由表,而对路由表的分析可以揭示网络的拓扑结构和网络地址等信息。因此,网络出于安全方面的考虑也可以采用静态路由。不占用网络带宽,因为静态路由不会产生更新流量。

  静态路由的缺点

  大型和复杂的网络环境通常不宜采用静态路由。一方面,网络管理员难以全面地了解整个网络的拓扑结构;另一方面,当网络的拓扑结构和链路状态发生变化时,路由器中的静态路由信息需要大范围地调整,这一工作的难度和复杂程度非常高。当网络发生变化或网络发生故障时,不能重选路由,很可能使路由失败。

  静态路由常见问题

  1)为什么要有默认路由

  路由得查看路由表而决定怎么转发数据包,用静态路由一个个的配置,繁琐易错。如果路由器有个邻居知道怎么前往所有的目的地,可以把路由表匹配的任务交给它,省了很多事。

  例,网关会知道所有的路由,如果一个路由器连接到网关,就可以配置默认路由,把所有的数据包都转发到网关。

  2)为什么默认路由是0.0.0.0

  匹配IP地址时,0表示wildcard, 任何值都可以。所以0.0.0.0和任何目的地址匹配都会成功,造成默认路由要求的效果。

  静态路由的举例

  基本的静态路由举例如图所示,由两个路由器R1和R2组成(接口号和IP地址在图中给出),它们分别连接了各自的网络:R1连接了子网192.168.0.0/24,R2连接了子网192.168.2.0/24[1] 。

  在没有配置静态路由的情况下,这两个子网中的计算机A、B之间是不能通信的。从计算机A发往计算机B的IP包,在到达R1后,R1不知道如何到达计算机B所在的网段192.168.2.0/24(即R1上没有去往192.168.2.0/24的路由表),同样R2也不知道如何到达计算机A所在的网段192.168.0.0/24,因此通信失败。

此时就

本文来源:http://www.myl5520.com/shitiku/53213.html

推荐内容