欢迎来到我的范文网!

星形胶质细胞标记物

生物教案 时间:2019-06-02

【www.myl5520.com--生物教案】

标志物
篇一:星形胶质细胞标记物

神经生物学研究中的常用标志物 神经元轴突标志物 Tau: Neuron Type of MAP; helps maintain structure of the axon

----------------------------------------------------------------------------

神经元树突标志物 Drebrin、MAP、SAP102

微管相关蛋白Microtubule-associated protein-2(MAP-2):Neuron Dendrite-specific MAP; protein found specifically in dendritic branching of neuron 是组成神经元细胞骨架的重要组成成分,包括:MAP5、MAP1.2和MAP1三种不同类型。在神经系统发育、形成和再生过程的不同时期扮演着重要的角色。其中MAP5为早期微观相关蛋白,在胚胎期和新生动物大脑中有较高表达,并随大脑的逐渐成熟而退化,对神经元突起的生长具有重要的引导作用。MAP2包括三种亚型:MAP2a、MAP2b和MAP2c。其中MAP2b和MAP2c出现较早。随着年龄的增长MAP2被组织蛋白酶D所降解,在不同类型的神经元中表达量存在差异。

----------------------------------------------------------------------------------------------

神经元早期标志物 Tubulin、b-4

tubulin :Neuron Important structural protein for neuron; identifies differentiated neuron Nervous System微管蛋白为球形分子, 分为两种类型:a微管蛋白(a-tubulin)和β微管蛋白(β-tubulin), 这两种微管蛋白具有相似的三维结构, 能够紧密地结合成二聚体, 作为微管组装的亚基,能够聚合并且参与细胞分裂。a和β微管蛋白各有一个GTP结合位点, 位于a亚基上的GTP结合位点, 是不可逆的结合位点,结合上去的GTP不能被水解,也不能被GDP替换。位于β亚基上的GTP结合位点结合GTP后能够被水解成GDP,所以这个位点又称为可交换的位点(exchangeable site,E位点)。β-III Tubulin又名tubulin β-4,是原始神经上皮中所表达的最早的神经元标志物之一。其作为神经元特有标志物,被广泛应用于神经生物学研究。

Noggin: Neuron A neuron-specific gene expressed during the development of neurons Neurosphere Embryoid body (E: ES Cluster of primitive neural cells in culture of differentiating ES cells; indicates presence of early neurons and glia

-----------------------------------------------------------------------------------------

星型胶质细胞标志物 Astrocyte、S-100、Microglia Markers

Glial fibrillary acidic protein (GFAP) :Astrocyte Protein specifically produced by astrocyte属于三型中间丝蛋白家族成员,在星型胶质细胞中大量特异性表达。在外周神经系统中的卫星细胞和部分雪旺氏细胞中也有少量表达。神经干细胞也会频繁并大量的表达GFAP。因此,GFAP抗体经常被作为星型胶质细胞的标志物用于神经生物学研究。另外,对于一些来源于星型胶质细胞的脑源性肿瘤,GFAP的表达量也较高。最近研究表明:在位于肝脏的枯否细胞、镜上皮细胞、唾液腺肿瘤细胞和红细胞中亦有GFAP的表达。

-------------------------------------------------------------------------------------------

星形胶质细胞标记物。

少突胶质细胞标志物

Myelin basic protein (MP :Oligodendrocyte Protein produced by mature oligodendrocytes; located in the myelin sheath surrounding neuronal structures 髓磷脂Myelin/oligodendrocyte specific protein (MOSP)是由中枢神经系统中少突胶质细胞和外周神经系统中雪旺氏细胞产生特殊蛋白质。是形成髓鞘的主要成分,对于引导神经冲动的传递起着致关重要的作用。 多年来,关于髓鞘的形成机理和与其相关的一些先天性疾病的发病

机制一直是众多科学家关注的重点。如:多重硬化症和脑白质营养不良等,都与神经系统的去髓鞘化相关。

O4: Oligodendrocyte Cell-surface marker on immature, developing oligodendrocyte O1: Oligodendrocyte Cell-surface marker that characterizes mature oligodendrocyte -----------------------------------------------------------------------------------

细胞周期抗凋亡蛋白 / 存活素 CNPase、OSP、Survivin

Survivin:是细胞循环周期中G2/M期表达的一种抗凋亡蛋白。在有丝分裂初期,Survivin与微管之间相互作用,参与调节纺锤体的动态形成。阻断Survivin与微管之间相互作用将导致Survivin抗凋亡作用的缺失,致使有丝分裂期间caspase 3的活性升高而导致凋亡。另外,在大脑受到创伤性损伤后,Survivin会在神经组织中大量表达。最近研究表明:Survivin与NeuN和 PCNA一起共同表达,对于脑损伤后调节神经细胞的增殖性反应起着重要的作用。

-----------------------------------------------------------------------------------------------

轴突引导 / Ephs Agrin、BAIAP2、Doublecortin、EphA、EphB、GAP43、Growth Gone、CD56、NRP2、Neuroserpin、P53

在神经系统发育过程中,神经元轴突在到达其相应靶标之前通常需要穿越较长的距离。位于轴突顶端的生长锥能够敏锐的感知来自周围各种吸引和排斥信息分子的引导,具有高度的能动性。而这些信息分子可能分别是固定的或弥散的、临近的或长距离的。因此,在众多复杂信息交错存在的情况下,轴突是如何精确地到达靶标与相应的神经元建立联系,并最终形成网络;在胚胎分化过程中,机体是如何实现整个过程的精确调控;始终是神经生物学研究的重点之一。

Ephs受体家族是已知最为庞大的酪氨酸激酶受体家族。Ephrins(及其相关受体Ephs)为膜相关蛋白,可分为两种类型: Ephrin-As和Ephrin-Bs。其中Ephrin-As为锚蛋白,属于GPI通路相关蛋白,而Ephrin-Bs则属于跨膜蛋白。研究表明:不同类型Ephrins和Ephs间的相互作用存在着双向地交互性,在细胞间信息传递过程中扮演着重要的角色。这对于神经组织的发育,尤其在轴突引导、神经网络的形成方面具有十分重要的意义。因此,近年来对于Ephrins / Ephs方面的研究始终是神经发育学领域的研究热点。

------------------------------------------------------------------------------------------------

神经干细胞标志物 Aggrecan、Bmp2、CNTF、EMX2、Vimentin星形胶质细胞标记物。

Nestin: Nestin是VI型中间丝蛋白60,61,尽管它主要表达在中枢神经系统的干细胞上,它几乎不在成熟中枢神经细胞上表达。Nestin在非神经元干细胞上也表达,例如胰岛祖细胞70-72和造血前体细胞。Nestin Neural progenitor Intermediate filament structural protein expressed in primitiveneural tissue

CD133: CD133, 是120kDa糖基化蛋白,包括5个跨膜结构域,最初是通过AC133单抗鉴定的,它能识别人HSCs的CD34+亚类29,30。一种CD133异构体AC133-2, 最近已经被克隆并鉴定为可被AC133抗体识别的原始表面抗原。CD133可以作为用CD34筛选HSC和体外扩增的补充。CD133+富集的亚类可以以同CD34+ 富集的亚类扩增的方式扩增,从而可保留多系增殖的能力。最近的研究为CD133的表达不限于原始血细胞提供了证据,同时也确定了非造血组织中一类独特的细胞群体。来源于外周血的CD133+ 可被体外诱导分化为内皮细胞。并且,can be induced to differentiate into endothelial cells in vitro.并且,人的神经干细胞用抗CD133抗体可被直接分离。CD133 Neural stem cell, HSC Cell-surface protein that identifies neural stem cells, which give rise to neurons and glial cells

PSA-NCAM (Polysialic acid-neural cell adhesion molecule): 胚胎时期的NCAM和

PSA-NCAM经常高唾液酸化,在神经元发育中起重要作用。74 PSA-NCAM可能和突触的重排和可塑性有关。75在成年,PSA-NCAM的表达限制在保留可塑性的区域。76神经元限制性的前体细胞可由高表达PSA-NCAM而鉴定,它们可经历自我更新和分化为多种表型的神经元。77 PSA-NCAM阳性的新生儿脑前体细胞将发育为胶质细胞,甲状腺素可调控它们变为少突细胞。78-80 多唾液酸的修饰可显著降低NCAM的黏附,从而PSA-NCAM被认为是纯粹的抗黏附分子,可以调节细胞的相互作用,促进脑的可塑性。更进一步的证据表明PSA-NCAM 可能和未知的信号分子反应,发挥诱导发育的角色。

p75 Neurotrophin R (NTR): p75 NTR,也称为低亲和神经生长因子受体,属1型跨膜TNF受体超家族。它可和NGF, BDNF, NT-3和 NT-4 结合 (低亲和力)。p75NTR, 在Trk存在时被活化, 提高对神经营养因子的反应性。TrkC受体和 p75 NTR 协同作用,参与神经系统发育。神经冠干细胞(NCSCs)根据它们表面表达p75NTR而已被分离。从外周神经组织新鲜分离的p75NTR+ NCSCs可体内和体外自我更新并产生神经元和神经胶质细胞。并且神经上皮来源的p75NTR+在培养中也有能力分化为神经元,平滑肌和雪旺细胞。最近,p75 NTR 已经被用来作为鉴定间质前体细胞和肝星形细胞的标志分子。

----------------------------------------------------------------------------------------------

神经元标志物 ALK、Ataxin7、CNS gp130、Choline Acetyltransferase、Coilin、Doublecortin、ELAVL、PG P9-5、Tyrosine Hydroxylase 、truncated Garp

Neurofilament(NF): Neuron Important structural protein for neuron; identifies differentiated neuron是神经元所特有的中间丝蛋白(10-12nm),分为NF-L(68 kDa)、NF-M(160 kDa) 和NF-H (200 kDa)三种不同类型的蛋白。它们与其他中间丝蛋白相互聚合形成网络,是构成神经元骨架的主要成分。发育过程中,Neurofilaments上的一些不同的位点会出现磷酸化和糖基化,而这些改变对于其参与细胞内物质转运的生物学功能具有重要的意义

NeuN:成为识别神经元标准的免疫细胞化学标志物

NSE :Neuronal specific enolase;

-----------------------------------------------------------------------------------------

突触标记物 14-3-3 beta + zeta、C3、CASK、CPEB、Calpastatin、Cellubrevin、Dynamin、Homer、PSD93、Rabphilin 3A、SAP102、SiRP、SNAP23 S-nitroso-Nacetylpenicillamine、Synapsin、Synaptobrevin、Syndecam、Syntaxin、VAMP、rSec6

Synaptophysin :Neuron Neuronal protein located in synapses; indicates connections between neurons

synaptotagmins:是位于突触囊泡上的膜蛋白,在由Ca2+ 信号介导的突触囊泡转运和泡吐过程起着重要的作用。Ca2+ 与synaptotagmins结合引起突触囊泡中神经递质的释放。另外,有研究证实:Ca2+依赖的synaptotagmins与相关受体(如neurexins、syntaxinAP2)之间的相互作用会导致蛋白激酶C的激活。作为突触特异性标志物,synaptotagmins在科研中被广泛使用。

-----------------------------

神经元及突触特异标记物汇总
篇二:星形胶质细胞标记物

相关疾病:

星形胶质细胞标记物。

 唾液腺肿瘤 脑损伤

把最近看过的神经生物学研究中的常用标志物作一总结,与大家分享

每一类列举了常用标志物,有的给出了解释和用途。

神经元轴突标志物

Tau: Neuron Type of MAP; helps maintain structure of the axon

----------------------------------------------------------------------------

神经元树突标志物 Drebrin、MAP、SAP102

微管相关蛋白Microtubule-associated protein-2(MAP-2):Neuron Dendrite-specific MAP; protein found specifically in dendritic branching of neuron 是组成神经元细胞骨架的重要组成成分,包括:MAP5、MAP1.2和MAP1三种不同类型。在神经系统发育、形成和再生过程的不同时期扮演着重要的角色。其中MAP5为早期微观相关蛋白,在胚胎期和新生动物大脑中有较高表达,并随大脑的逐渐成熟而退化,对神经元突起的生长具有重要的引导作用。MAP2包括三种亚型:MAP2a、MAP2b和MAP2c。其中MAP2b和MAP2c出现较早。随着年龄的增长MAP2被组织蛋白酶D所降解,在不同类型的神经元中表达量存在差异。

----------------------------------------------------------------------------------------------

神经元早期标志物 Tubulin、b-4

tubulin :Neuron Important structural protein for neuron; identifies differentiated neuron Nervous System微管蛋白为球形分子, 分为两种类型:a微管蛋白(a-tubulin)和β微管蛋白(β-tubulin), 这两种微管蛋白具有相似的三维结构, 能够紧密地结合成二聚体, 作为微管组装的亚基,能够聚合并且参与细胞分裂。a和β微管蛋白各有一个GTP结合位点, 位于a亚基上的GTP结合位点, 是不可逆的结合位点,结合上去的GTP不能被水解,也不能被GDP替换。位于β亚基上的GTP结合位点结合GTP后能够被水解成GDP,所以这个位点又称为可交换的位点(exchangeable site,E位点)。β-III Tubulin又名tubulin β-4,是原始神经上皮中所表达的最早的神经元标志物之一。其作为神经元特有标志物,被广泛应用于神经生物学研究。星形胶质细胞标记物。

Noggin: Neuron A neuron-specific gene expressed during the development of neurons

Neurosphere Embryoid body (E

early neurons and glia

-----------------------------------------------------------------------------------------

星型胶质细胞标志物 Astrocyte、S-100、Microglia Markers

Glial fibrillary acidic protein (GFAP) :Astrocyte Protein specifically produced by astrocyte属于三型中间丝蛋白家族成员,在星型胶质细胞中大量特异性表达。在外周神经系统中的卫星细胞和部分雪旺氏细胞中也有少量表达。神经干细胞也会频繁并大量的表达GFAP。因此,GFAP抗体经常被作为星型胶质细胞的标志物用于神经生物学研究。另外,对于一些来源于星型胶质细胞的脑源性肿瘤,GFAP的表达量也较高。最近研究表明:在位于肝脏的枯否细胞、镜上皮细胞、唾液腺肿瘤细胞和红细胞中亦有GFAP的表达。

-------------------------------------------------------------------------------------------

少突胶质细胞标志物

Myelin basic protein (MP :Oligodendrocyte Protein produced by mature oligodendrocytes; located in the myelin sheath : ES Cluster of primitive neural cells in culture of differentiating ES cells; indicates presence of surrounding neuronal structures 髓磷脂Myelin/oligodendrocyte specific protein (MOSP)是由中枢神经系统中少突胶质细胞和外周神经系统中雪旺氏细胞产生特殊蛋白质。是形成髓鞘的主要成分,对于引导神经冲动的传递起着致关重要的作用。 多年来,关于髓鞘的形成机理和与其相关的一些先天性疾病的发病机制一直是众多科学家关注的重点。如:多重硬化症和脑白质营养不良等,都与神经系统的去髓鞘化相关。

O4: Oligodendrocyte Cell-surface marker on immature, developing oligodendrocyte

O1: Oligodendrocyte Cell-surface marker that characterizes mature oligodendrocyte

-----------------------------------------------------------------------------------

细胞周期抗凋亡蛋白 / 存活素 CNPase、OSP、Survivin

Survivin:是细胞循环周期中G2/M期表达的一种抗凋亡蛋白。在有丝分裂初期,Survivin与微管之间相互作用,参与调节纺锤体的动态

形成。阻断Survivin与微管之间相互作用将导致Survivin抗凋亡作用的缺失,致使有丝分裂期间caspase 3的活性升高而导致凋亡。另外,在大脑受到创伤性损伤后,Survivin会在神经组织中大量表达。最近研究表明:Survivin与NeuN和 PCNA一起共同表达,对于脑损伤后调节神经细胞的增殖性反应起着重要的作用。

-----------------------------------------------------------------------------------------------

轴突引导 / Ephs Agrin、BAIAP2、Doublecortin、EphA、EphB、GAP43、Growth Gone、CD56、NRP2、Neuroserpin、P53

在神经系统发育过程中,神经元轴突在到达其相应靶标之前通常需要穿越较长的距离。位于轴突顶端的生长锥能够敏锐的感知来自周围各种吸引和排斥信息分子的引导,具有高度的能动性。而这些信息分子可能分别是固定的或弥散的、临近的或长距离的。因此,在众多复杂信息交错存在的情况下,轴突是如何精确地到达靶标与相应的神经元建立联系,并最终形成网络;在胚胎分化过程中,机体是如何实现整个过程的精确调控;始终是神经生物学研究的重点之一。

Ephs受体家族是已知最为庞大的酪氨酸激酶受体家族。Ephrins(及其相关受体Ephs)为膜相关蛋白,可分为两种类型: Ephrin-As和Ephrin-Bs。其中Ephrin-As为锚蛋白,属于GPI通路相关蛋白,而Ephrin-Bs则属于跨膜蛋白。研究表明:不同类型Ephrins和Ephs间的相互作用存在着双向地交互性,在细胞间信息传递过程中扮演着重要的角色。这对于神经组织的发育,尤其在轴突引导、神经网络的形成方面具有十分重要的意义。因此,近年来对于Ephrins / Ephs方面的研究始终是神经发育学领域的研究热点。

------------------------------------------------------------------------------------------------

神经干细胞标志物 Aggrecan、Bmp2、CNTF、EMX2、Vimentin

Nestin: Nestin是VI型中间丝蛋白60,61,尽管它主要表达在中枢神经系统的干细胞上,它几乎不在成熟中枢神经细胞上表达。Nestin在非神经元干细胞上也表达,例如胰岛祖细胞70-72和造血前体细胞。Nestin Neural progenitor Intermediate filament structural protein expressed in primitiveneural tissue

CD133: CD133, 是120kDa糖基化蛋白,包括5个跨膜结构域,最初是通过AC133单抗鉴定的,它能识别人HSCs的CD34+亚类29,30。一种CD133异构体AC133-2, 最近已经被克隆并鉴定为可被AC133抗体识别的原始表面抗原。CD133可以作为用CD34筛选HSC和体外扩增的补充。CD133+富集的亚类可以以同CD34+ 富集的亚类扩增的方式扩增,从而可保留多系增殖的能力。最近的研究为CD133的表达不限于原始血细胞提供了证据,同时也确定了非造血组织中一类独特的细胞群体。来源于外周血的CD133+ 可被体外诱导分化为内皮细胞。并且,can be induced to differentiate into endothelial cells in vitro.并且,人的神经干细胞用抗CD133抗体可被直接分离。CD133 Neural stem cell, HSC Cell-surface protein that identifies neural stem cells, which give rise to neurons and glial cells

PSA-NCAM (Polysialic acid-neural cell adhesion molecule): 胚胎时期的NCAM和PSA-NCAM经常高唾液酸化,在神经元发育中起重要作用。74 PSA-NCAM可能和突触的重排和可塑性有关。75在成年,PSA-NCAM的表达限制在保留可塑性的区域。76神经元限制性的前体细胞可由高表达PSA-NCAM而鉴定,它们可经历自我更新和分化为多种表型的神经元。77 PSA-NCAM阳性的新生儿脑前体细胞将发育为胶质细胞,甲状腺素可调控它们变为少突细胞。78-80 多唾液酸的修饰可显著降低NCAM的黏附,从而PSA-NCAM被认为是纯粹的抗黏附分子,可以调节细胞的相互作用,促进脑的可塑性。更进一步的证据表明PSA-NCAM 可能和未知的信号分子反应,发挥诱导发育的角色。

p75 Neurotrophin R (NTR): p75 NTR,也称为低亲和神经生长因子受体,属1型跨膜TNF受体超家族。它可和NGF, BDNF, NT-3和 NT-4 结合 (低亲和力)。p75NTR, 在Trk存在时被活化, 提高对神经营养因子的反应性。TrkC受体和 p75 NTR 协同作用,参与神经系统发育。神经冠干细胞(NCSCs)根据它们表面表达p75NTR而已被分离。从外周神经组织新鲜分离的p75NTR+ NCSCs可体内和体外自我更新并产生神经元和神经胶质细胞。并且神经上皮来源的p75NTR+在培养中也有能力分化为神经元,平滑肌和雪旺细胞。最近,p75 NTR 已经被用来作为鉴定间质前体细胞和肝星形细胞的标志分子。

----------------------------------------------------------------------------------------------

神经元标志物 ALK、Ataxin7、CNS gp130、Choline Acetyltransferase、Coilin、Doublecortin、ELAVL、PG P9-5、Tyrosine Hydroxylase 、truncated Garp

Neurofilament(NF): Neuron Important structural protein for neuron; identifies differentiated neuron是神经元所特有的中间丝蛋白(10-12nm),分为NF-L(68 kDa)、NF-M(160 kDa) 和NF-H (200 kDa)三种不同类型的蛋白。它们与其他中间丝蛋白相互聚合形成网络,是构成神经元骨架的主要成分。发育过程中,Neurofilaments上的一些不同的位点会出现磷酸化和糖基化,而这些改变对于其参与细胞内物质转运的生物学功能具有重要的意义

NeuN:成为识别神经元标准的免疫细胞化学标志物

NSE :Neuronal specific enolase;

-----------------------------------------------------------------------------------------

突触标记物 14-3-3 beta + zeta、C3、CASK、CPEB、Calpastatin、Cellubrevin、Dynamin、Homer、PSD93、Rabphilin 3A、SAP102、SiRP、SNAP23 S-nitroso-Nacetylpenicillamine、Synapsin、Synaptobrevin、Syndecam、Syntaxin、VAMP、rSec6

Synaptophysin :Neuron Neuronal protein located in synapses; indicates connections between neurons

synaptotagmins:是位于突触囊泡上的膜蛋白,在由Ca2+ 信号介导的突触囊泡转运和泡吐过程起着重要的作用。Ca2+ 与synaptotagmins结合引起突触囊泡中神经递质的释放。另外,有研究证实:Ca2+依赖的synaptotagmins与相关受体(如neurexins、syntaxinAP2)之间的相互作用会导致蛋白激酶C的激活。作为突触特异性标志物,synaptotagmins在科研中被广泛使用。

-----------------------------

经久不衰的精华帖子,加密时间满两年,今日解密,希望更多的站友分享pansy站友的实验心得。

星形胶质细胞瘤的标志物() A.calretinin B.HMB45
篇三:星形胶质细胞标记物

一、整体解读

试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。

1.回归教材,注重基础

试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。

2.适当设置题目难度与区分度

选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。

3.布局合理,考查全面,着重数学方法和数学思想的考察

在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块问题。这些问题都是以知识为载体,立意于能力,让数学思想方法和数学思维方式贯穿于整个试题的解答过程之中。

神经干细胞(NSC) 标记物
篇四:星形胶质细胞标记物

神经干细胞是指具有分化为神经元细胞、星形胶质细胞、少突胶质细胞的能力,能自我更新并足以提供大量脑组织细胞的细胞。神经干细胞的标记物,包括Nestin、PSA-NCAM、p75神经营养R(NTR) 、Mu-sashi1等。

① Nestin

Nestin是一种中间丝蛋白Ⅵ,它主要表达在中枢神经系统干细胞,在几乎所有成熟CNS细胞上均不表达。Nestin作为标记物已经广泛应用在识别神经系统发育中和体外细胞培养中的CNS干细胞。然而Nestin在CNS 干细胞生物学上的作用尚不明确。Nestin在体外并不形成中间丝。它的短暂表达已经证明是神经分化途径的关键一步。Nestin 有时也在非神经干细胞群表达,例如胰岛祖细胞及造血祖细胞。

② PSA-NCAM(唾液酸-神经细胞粘附分子)

脑的神经细胞粘附分子(NCAM) 亚型的调节性表达是神经发育过程的关键所在。NCAM的胚胎型(PSA-NCAM) 主要在发育中的神经系统表达。PSA-NCAM可能同突触的重排和可塑性相关。在成年人PSA-NCAM 表达被限制在维持可塑性的地区。高表达PSA-NCAM 的神经元-限制性前体可以自我更新和分化为多种神经细胞表型。PSA-NCAM+新生脑前体细胞被限制在向神经胶质方向发展,甲状腺激素可以调控其向少突神经胶质细胞发展。唾液酸变性作用极大地降低了NCAM粘附性,因此,也有人认为PSA-NCAM是作为单一的抗粘附分子来调节大脑可塑性发展中的细胞-细胞相互作用。越来越多的证据表明,PSA-NCAM和一些信号分子相互作用,在脑的发育中起指导性作用。

③ p75神经营养R(NTR)

p75NTR也称作低亲合力神经生长因子(NGF)受体,是属于肿瘤坏死因子受体超家族的一类跨膜蛋白。它同等地结合NGF、BDNF、NT23和NT4(低亲合力) 。当被Trk活化时,p75NTR 增加对神经亲和力的反应。在神经系统发育过程中TrkC受体和p75NTR 起着重要作用。根据细胞表面表达p75NTR,现在已分离出神经脊干细胞(NCSCs)。新近从周围神经组织中分离的p75NTR+ NCSCs可以在体外和体内自我更新和形成神经元和神经胶质。另外,神经上皮来源的p75NTR+ 细胞也可以在细胞培养时分化为神经元、平滑肌和schwann 细胞。p75NTR也可以用作标记物来识别间充质前体以及肝脏的星形细胞。

④ Musashi1

Musashi1是一种进化保守的RNA-结合蛋白,在维持干细胞状态、分化和肿瘤发生方面起着重要作用。Musashi1 选择性地表达在神经前体细胞上,包括神经干细胞上。在神经系统外,Musashi1还是肠干细胞的选择性标记。这些组织干细胞或未成熟细胞Musashi1的表达,表明Musashi1在转录后基因调节阶段维持这些细胞未分化状态起重要作用。Musashi1在体内的一个靶分子是m-NumbmRNA,m-Numb在神经分化上起重要作用。用突变的方法研究证明,Musashi1通过转录抑制m-Numb的合成。因为Numb是进化保守的细胞内Notch拮抗剂,以推测Musashi1 是Notch1 信号通路的正调节因子。Musashi1过度表达通过依赖RBP2Jk的旁路激活Notch1,而Notch信号途径功能为诱导哺乳动物神经干细胞自我更新。通过musashi1-P-小鼠培养脑细胞的Musashi蛋白产物反义去除研究,发现这些基因在维持神经干细胞未分化状态起着重要的作用。Musashi抑制m-Numb转录的分子机制尚待进一步研究。Musashi1有可能除转录调控外还参与其他调控途径。另外,Musashi1还表达在一些脑肿瘤的特殊类型(这些肿瘤可能起源自非成熟脑细胞),并且表达水平和肿瘤的恶性程度及增殖能力相关。

这些干细胞标记目前在实验室和临床广泛使用,在干细胞的进一步研究中也可能扮演重要角色。然而,干细胞标记的使用也存在着一些局限性。例如还需要寻找单一的、特异的识别多能干细胞的标记物。随着越来越多的新类型干细胞的发现,也需要有更精确的工具来满足研究的需要。在可预见的未来,干细胞标记将继续在干细胞寻找及其生物学特性分析中

起重要的作用。

本文来源:http://www.myl5520.com/jiaoanxiazai/96888.html

推荐内容