欢迎来到我的范文网!

混凝土与岩石摩擦系数

物理教案 时间:2019-03-26

【www.myl5520.com--物理教案】

常用的岩土和岩石物理力学参数
篇一:混凝土与岩石摩擦系数

(E, ν) 与(K, G)的转换关系如下:

K

E

3(12)

E

(7.2)

2(1)

G

当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K值将会非常的高,偏离实际值很多。最好是确定好K值(利用压缩试验或者P波速度试验估计),然后再用K和ν来计算G值。

表7.1和7.2分别给出了岩土体的一些典型弹性特性值。

岩石的弹性(实验室值)(Goodman,1980) 表7.1

土的弹性特性值(实验室值)(Das,1980)

表7.2

各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5

中弹性常量:E1, E3, ν12,ν13和G13;正交各向异性弹性模型有9个弹性模量E1,E2,E3, ν12,ν13,ν23,G12,G13和G23。这些常量的定义见理论篇。

均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3.7给出了各向异性岩石的一些典型的特性值。

横切各向同性弹性岩石的弹性常数(实验室) 表7.3

流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量Kf,如果土粒是可压缩的,则要用到比奥模量M。纯净水在室温情况下的Kf值是2 Gpa。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的Kf,不用折减。这是由于对于大的Kf流动时间步长很小,并且,力学收敛性也较差。在FLAC3D中用到的流动时间步长, tf与孔隙度n,渗透系数k以及Kf有如下关系:

tf

n

(7.3) '

Kfk

对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数C来决定改变Kf的结果。

C

k'n

m

Kf

(7.4)

其中

m

1

K4G/3

kk'f

其中,k——FLAC3D使用的渗透系数

k——渗透系数,单位和速度单位一样(如米/秒) f——水的单位重量

考虑到固结时间常量与C成比例,我么可以将Kf的值从其实际值(210Pa)减少,利用上面得表达式看看其产生的误差。

流动体积模量还会影响无流动但是有空隙压力产生的模型的收敛速率(见1.7节流动与力学的相互作用)。如果Kf是一个通过比较机械模型得到的值,则由于机械变形将会产生孔隙压力。如果Kf远比k大,则压缩过程就慢,但是一般有可能Kf对其影响很小。例如在土体中,孔隙水中还会包含一些尚未溶解的空气,从而明显的使体积模量减小。

在无流动情况下,饱和体积模量为:

9

'

KuK

不排水的泊松比为:

Kf

(7.5) n

u

3Ku2G

(7.6)

2(3KuG)

这些值应该和排水常量k和作比较,来估计压缩的效果。重要的是,在FLAC3D中,排水特性是用在机械连接的流变计算中的。对于可压缩颗粒,比奥模量对压缩模型的影响比例与流动。

7.3 固有的强度特性

在FLAC3D中,描述材料破坏的基本准则是摩尔-库仑准则,这一准则把剪切破坏面看作直线破坏面:

fs13N (7.7)

其中 Nφ(1sin)/(1sin)

1——最大主应力 (压缩应力为负);

3——最小主应力

——摩擦角

c——粘聚力

当fs0时进入剪切屈服。这里的两个强度常数φ和c是由实验室的三轴实验获得的。当主应力变为拉力时,摩尔-库仑准则就将失去其物理意义。简单情况下,当表面的在拉应力区域发展到3等于单轴抗拉强度的点时, ,这个次主应力不会达到拉伸强度—例如;

t

ft3t (7.8)

当ft0时进入拉伸屈服。岩石和混凝土的抗拉强度通常有由西实验获得。注意,抗拉强度不能超过σ3, 这是和摩尔-库仑关系的顶点的限制是一致的。最大的值由下式给出

t

max

c

(7.9) tan

表7.4列出了一系列具有代表性的典型的岩石标本的粘聚力、摩擦角和抗拉强度值。土体的具有代表性的典型粘聚力和摩擦角的具有代表性的典型值见表7.5。土体强度用无侧限抗压强度qu表示,qu与粘聚力C和摩擦角的关系由下式确定混凝土与岩石摩擦系数。

qu2ctan(45/2) (7.10)

岩石的强度特性值(实验室测定) 表7.4

土体的强度特性值(排水实验测定) 表7.5

岩石物理力学性质一览表----岩石物理力学性质各项指标

土类

常用岩土材料参数和岩石物理力学性质一览表
篇二:混凝土与岩石摩擦系数

(E, ν) 与(K, G)的转换关系如下:

K

E

3(12)

E

(7.2)

2(1)

G

当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K值将会非常的高,偏离实际值很多。最好是确定好K值(利用压缩试验或者P波速度试验估计),然后再用K和ν来计算G值。

表7.1和7.2分别给出了岩土体的一些典型弹性特性值。混凝土与岩石摩擦系数。

岩石的弹性(实验室值)(Goodman,1980) 表7.1

土的弹性特性值(实验室值)(Das,1980)

表7.2

各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5

中弹性常量:E1, E3, ν12,ν13和G13;正交各向异性弹性模型有9个弹性模量E1,E2,E3, ν12,ν13,ν23,G12,G13和G23。这些常量的定义见理论篇。

均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3.7给出了各向异性岩石的一些典型的特性值。

横切各向同性弹性岩石的弹性常数(实验室) 表7.3

流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量Kf,如果土粒是可压缩的,则要用到比奥模量M。纯净水在室温情况下的Kf值是2 Gpa。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的Kf,不用折减。这是由于对于大的Kf流动时间步长很小,并且,力学收敛性也较差。在FLAC3D中用到的流动时间步长, tf与孔隙度n,渗透系数k以及Kf有如下关系:

tf

n

(7.3) Kfk'

对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数C来决定改变Kf的结果。

C

k'n

m

Kf

(7.4)

其中

m

1

K4G/3

kk'f

其中,k——FLAC3D使用的渗透系数

k——渗透系数,单位和速度单位一样(如米/秒) f——水的单位重量

考虑到固结时间常量与C成比例,我么可以将Kf的值从其实际值(210Pa)减少,利用上面得表达式看看其产生的误差。

流动体积模量还会影响无流动但是有空隙压力产生的模型的收敛速率(见1.7节流动与力学的相互作用)。如果Kf是一个通过比较机械模型得到的值,则由于机械变形将会产生孔隙压力。如果Kf远比k大,则压缩过程就慢,但是一般有可能Kf对其影响很小。例如在土体中,孔隙水中还会包含一些尚未溶解的空气,从而明显的使体积模量减小。

在无流动情况下,饱和体积模量为:

9

'

KuK

不排水的泊松比为:

Kf

(7.5) n

u

3Ku2G

(7.6)

2(3KuG)

这些值应该和排水常量k和作比较,来估计压缩的效果。重要的是,在FLAC3D中,排水特性是用在机械连接的流变计算中的。对于可压缩颗粒,比奥模量对压缩模型的影响比例与流动。

7.3 固有的强度特性

在FLAC3D中,描述材料破坏的基本准则是摩尔-库仑准则,这一准则把剪切破坏面看作直线破坏面:

fs13N (7.7)

其中 Nφ(1sin)/(1sin)

1——最大主应力 (压缩应力为负); 3——最小主应力

——摩擦角

c——粘聚力

当fs0时进入剪切屈服。这里的两个强度常数φ和c是由实验室的三轴实验获得的。当主应力变为拉力时,摩尔-库仑准则就将失去其物理意义。简单情况下,当表面的在拉应力区域发展到3等于单轴抗拉强度的点时, ,这个次主应力不会达到拉伸强度—例如;

t

ft3t (7.8)

当ft0时进入拉伸屈服。岩石和混凝土的抗拉强度通常有由西实验获得。注意,抗拉强度不能超过σ3, 这是和摩尔-库仑关系的顶点的限制是一致的。最大的值由下式给出

t

max混凝土与岩石摩擦系数。

c

(7.9) tan

表7.4列出了一系列具有代表性的典型的岩石标本的粘聚力、摩擦角和抗拉强度值。土体的具有代表性的典型粘聚力和摩擦角的具有代表性的典型值见表7.5。土体强度用无侧限抗压强度qu表示,qu与粘聚力C和摩擦角的关系由下式确定

qu2ctan(45/2) (7.10)

岩石的强度特性值(实验室测定) 表7.4

混凝土与岩石摩擦系数。

土体的强度特性值(排水实验测定) 表7.5

岩石物理力学性质一览表

岩石物理力学性质一览表 性质

岩性 岩石密度(g/cm3) 液限% 塑限% 塑性指数 变形模量(MPa) 孔隙比% 抗拉强度 内聚力C 摩擦角 备注 碎石(堆积)类土 2.65~2.7

土粒密度 20~40 0.4~0.6 一般假定0 一般假定0 36~42

黄土类土 干1.3~1.5 23~33 15~20 8~13 新黄土具有湿陷性 0.8~1.1 一般假定0 0.03~0.06(老)

0.01~0.033(新) 15~25(老) 17.8~28.4(新) 含水率% 10~25

粘性土 1.8~2.05 23~55 16~30 7~25 4~12(压缩模量) 0.7~1.0 一般假定0 0.005~0.06 8~26 含水率% 20~40

岩石密度(g/cm3) 孔隙率 吸水率 软化系数 变形模量(103MPa) 抗压强度 抗拉强度 内聚力C 摩擦角

泥岩 0.03~0.37(粘土岩) 20.7~59(干粘土岩) 0.01 0.04~0.09(粘土岩) 23 15~30(粘土岩)

页岩 2.3~2.62 0.4~10.0 0.5~3.2 0.24~0.74 16~20 10~100 2~10 3~20 15~30

泥板岩 2.3~2.8 0.1~0.5 0.1~0.3 0.39~0.52 123~199(干板岩)

粉砂岩 10~32 0.07~1.7 29~59

石英砂岩 2.6~2.71 54~58 68~102.5 1.9~3.0 13(寒武) 54(震旦) 75~82.5(似内摩擦角)摩擦系数0.54(寒武)0.49(震旦) 砂岩 2.2~2.71 1.6~28.0 0.2~9.0 0.65~0.97 17~41 20~200 4~25 8~40 35~50

砾岩 2.40~2.66 0.8~10.0 0.3~2.4 0.50~0.96 6.7~16.2(新鲜岩体) 10~150 2~15 8~50 35~50

泥灰岩 2.3~2.7 1.0~10.0 0.5~3.0 0.44~0.54 1.3~2.6(新鲜岩体) 3.5~20

40~60 0.3~1.4

2.8~4.2 0.32(新鲜岩体) 37(新鲜岩体)

灰岩 2.3~2.77 16.0~52 0.1~4.45 0.7~0.94 35~39 50~200 5~20 10~50 35~50

白云岩 2.1~2.7 0.3~25.0 0.1~3.0 6.7~32 80~250 15~25 20~50 35~50

常用岩土材料参数和岩石物理力学性质一览表
篇三:混凝土与岩石摩擦系数

(E, ν) 与(K, G)的转换关系如下:

K

E

3(12)

E

(7.2)

2(1)

G

当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K值将会非常的高,偏离实际值很多。最好是确定好K值(利用压缩试验或者P波速度试验估计),然后再用K和ν来计算G值。

表7.1和7.2分别给出了岩土体的一些典型弹性特性值。

岩石的弹性(实验室值)(Goodman,1980) 表7.1

土的弹性特性值(实验室值)(Das,1980)

表7.2

各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5

中弹性常量:E1, E3, ν12,ν13和G13;正交各向异性弹性模型有9个弹性模量E1,E2,E3, ν12,ν13,ν23,G12,G13和G23。这些常量的定义见理论篇。

均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3.7给出了各向异性岩石的一些典型的特性值。

横切各向同性弹性岩石的弹性常数(实验室) 表7.3

流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量Kf,如果土粒是可压缩的,则要用到比奥模量M。纯净水在室温情况下的Kf值是2 Gpa。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的Kf,不用折减。这是由于对于大的Kf流动时间步长很小,并且,力学收敛性也较差。在FLAC3D中用到的流动时间步长, tf与孔隙度n,渗透系数k以及Kf有如下关系:

tf

n

(7.3) '

Kfk

对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数C来决定改变Kf的结果。

C

k'n

m

Kf

(7.4)

其中

m

1

K4G/3

kk'f

其中,k——FLAC3D使用的渗透系数

k——渗透系数,单位和速度单位一样(如米/秒) f——水的单位重量

考虑到固结时间常量与C成比例,我么可以将Kf的值从其实际值(210Pa)减少,利用上面得表达式看看其产生的误差。

流动体积模量还会影响无流动但是有空隙压力产生的模型的收敛速率(见1.7节流动与力学的相互作用)。如果Kf是一个通过比较机械模型得到的值,则由于机械变形将会产生孔隙压力。如果Kf远比k大,则压缩过程就慢,但是一般有可能Kf对其影响很小。例如在土体中,孔隙水中还会包含一些尚未溶解的空气,从而明显的使体积模量减小。

在无流动情况下,饱和体积模量为:

9

'

KuK

不排水的泊松比为:

Kf

(7.5) n

u

3Ku2G

(7.6)

2(3KuG)

这些值应该和排水常量k和作比较,来估计压缩的效果。重要的是,在FLAC3D中,排水特性是用在机械连接的流变计算中的。对于可压缩颗粒,比奥模量对压缩模型的影响比例与流动。

7.3 固有的强度特性

在FLAC3D中,描述材料破坏的基本准则是摩尔-库仑准则,这一准则把剪切破坏面看作直线破坏面:

fs13N (7.7)

其中 Nφ(1sin)/(1sin)

1——最大主应力 (压缩应力为负);

3——最小主应力

——摩擦角

c——粘聚力

当fs0时进入剪切屈服。这里的两个强度常数φ和c是由实验室的三轴实验获得的。当主应力变为拉力时,摩尔-库仑准则就将失去其物理意义。简单情况下,当表面的在拉应力区域发展到3等于单轴抗拉强度的点时, ,这个次主应力不会达到拉伸强度—例如;

t

ft3t (7.8)

当ft0时进入拉伸屈服。岩石和混凝土的抗拉强度通常有由西实验获得。注意,抗拉强度不能超过σ3, 这是和摩尔-库仑关系的顶点的限制是一致的。最大的值由下式给出

t

max

c

(7.9) tan

表7.4列出了一系列具有代表性的典型的岩石标本的粘聚力、摩擦角和抗拉强度值。土体的具有代表性的典型粘聚力和摩擦角的具有代表性的典型值见表7.5。土体强度用无侧限抗压强度qu表示,qu与粘聚力C和摩擦角的关系由下式确定

qu2ctan(45/2) (7.10)

岩石的强度特性值(实验室测定) 表7.4

土体的强度特性值(排水实验测定) 表7.5

岩石物理力学性质一览表

岩石物理力学性质一览表 性质

岩性 岩石密度(g/cm3) 液限% 塑限%

塑性指数 变形模量(MPa) 孔隙比% 抗拉强度 内聚力C 摩擦角 备注

碎石(堆积)类土 2.65~2.7

土粒密度 20~40 0.4~0.6 一般假定0 一般假定0 36~42

黄土类土 干1.3~1.5 23~33 15~20 8~13 新黄土具有湿陷性 0.8~1.1 一般假定0 0.03~0.06(老)

0.01~0.033(新) 15~25(老) 17.8~28.4(新) 含水率% 10~25

粘性土 1.8~2.05 23~55 16~30 7~25 4~12(压缩模量) 0.7~1.0 一般假定0 0.005~0.06 8~26 含水率% 20~40

岩石密度(g/cm3) 孔隙率 吸水率 软化系数 变形模量(103MPa) 抗压强度 抗拉强度 内聚力C 摩擦角

泥岩 0.03~0.37(粘土岩) 20.7~59(干粘土岩) 0.01 0.04~0.09(粘土岩) 23 15~30(粘土岩)

页岩 2.3~2.62 0.4~10.0 0.5~3.2 0.24~0.74 16~20 10~100 2~10 3~20 15~30

泥板岩 2.3~2.8 0.1~0.5 0.1~0.3 0.39~0.52 123~199(干板岩)

粉砂岩 10~32 0.07~1.7 29~59

石英砂岩 2.6~2.71 54~58 68~102.5 1.9~3.0 13(寒武) 54(震旦) 75~82.5(似内摩擦角)摩擦系数0.54(寒武)0.49(震旦) 砂岩 2.2~2.71 1.6~28.0 0.2~9.0 0.65~0.97 17~41 20~200 4~25 8~40 35~50

砾岩 2.40~2.66 0.8~10.0 0.3~2.4 0.50~0.96 6.7~16.2(新鲜岩体) 10~150 2~15 8~50 35~50

泥灰岩 2.3~2.7 1.0~10.0 0.5~3.0 0.44~0.54 1.3~2.6(新鲜岩体) 3.5~20

40~60 0.3~1.4

2.8~4.2 0.32(新鲜岩体) 37(新鲜岩体)

灰岩 2.3~2.77 16.0~52 0.1~4.45 0.7~0.94 35~39 50~200 5~20 10~50 35~50

白云岩 2.1~2.7 0.3~25.0 0.1~3.0 6.7~32 80~250 15~25 20~50 35~50

理正岩土常见问题-挡土墙
篇四:混凝土与岩石摩擦系数

常见问题 挡土墙

1. “圬工之间摩擦系数” 意义,如何取值?

答:用于挡墙截面验算,反应圬工间的摩阻力大小。取值与圬工种类有关,一般采用0.4(主要组合)~0.5(附加组合),

该值取自《公路设计手册》第603页。

2. “地基土的粘聚力”意义,如何取值?

答:整体稳定验算时滑移面所在地基土的粘聚力,由地勘报告得到。 3. “墙背与墙后填土摩擦角”意义,如何取值?

答:用于土压力计算。影响土压力大小及作用方向。取值由墙背粗糙程度和填料性质及排水条件决定,无试验资料时,

参见相关资料《公路路基手册》591页,具体内容如下: 墙背光滑、排水不良时:δ=0; 混凝土墙身时:δ=(0~1/2)φ

一般情况、排水良好的石砌墙身:δ=(1/2~2/3)φ 台阶形的石砌墙背、排水良好时:δ=2/3φ 第二破裂面或假象墙背时:δ=φ 4. “墙底摩擦系数” 意义,如何取值? 答:用于滑移稳定验算。

5. “地基浮力系数”如何取值?

答:该参数只在公路行业《公路路基手册》中有定义表格,其他行业可直接取1.0,具体《公路路基手册》定义表格如下:

6. “地基土的内摩擦角”意义,如何取值?

答:用于防滑凸榫前的被动土压力计算,影响滑移稳定验算;从勘察报告中取得。 7. “圬工材料抗力分项系数” 意义,如何取值?

答:按《公路路基设计规范》JTG D30-2004,采用极限状态法验算挡墙构件正截面强度和稳定时用材料抗力分项系数,

8. “地基土摩擦系数” 意义,如何取值?

答:用于倾斜基底时土的抗滑移计算。参见《公路路基手册》P593表3-3-3。见下表。 9. 挡土墙的地面横坡角度应怎么取?

坡度,一般土压力只考虑岩石以上的那部分土压力,也可根据经验来给。如挡土墙后为土,地面横坡角度一般根据经验来给,如无经验,可给0(土压力最大)。

10. 浸水挡墙的土压力与非浸水挡墙有何区别?

答:浸水挡墙验算时,水压力的影响主要表现在两个方面:首先,用库伦理论计算土

压力时破坏楔体要考虑水压力的作用。计算破坏楔体时,有水的情况和无水的情况时计算原理是一样的,只是浸水部分土体采用浮重度。

11. 挡土墙软件(悬臂式)计算得到的内力(弯矩)是设计值还是标准值?

答:弯矩结果是标准值。在进行配筋计算时,弯矩自动乘荷载分项系数得到设计值。 12. 挡土墙后有多层土时,软件提供的方法如何计算土压力?应注意什么?

答:假定土层平行,未出现第二破裂面的情况下,分别求出每一层的土压力及其作用点

高度,最后求其合力及作用点高度,由于计算理论上的限制,须注意多层土计算要求各个土层的土性基本接近,否则计算误差将增大。当出现第二破裂面时,软件采用按土层厚度加权平均的方式计算破裂角和土压力。也就是将土层的各种参数按厚度加权平均,然后再按匀质土计算主动土压力。 13. “挡墙分段长度”是何意义?

答:用于车辆荷载换算。车辆荷载换算公式

度取值,为施工缝之间的长度。

14. 在《建筑基础规范2002》P42中规定,挡墙随高度变化,土压力要乘一个调整系数,软件如何实现?

答:由于单层土的土压力调整系数是内设的,因此只能用多层土来输入。选多层土,在土层中只输入一层土,将土层厚

度输成该层土的实际厚度,并输入土压力调整系数即可。

15. 挡土墙软件中对墙身有外力的情况如何考虑?

答:可考虑作用在挡土墙上的集中荷载,作用点的位置坐标x,y的原点为墙的左上角点,作用角度取值范围为0~360度,

顺时针方向为正方向,注意外力必须作用在墙体上。

16. 挡墙计算中,容许应力法和极限状态法分别对应的参数和取法是

本文来源:http://www.myl5520.com/jiaoanxiazai/95807.html

推荐内容