欢迎来到我的范文网!

pq耦合因素导致的电压谐振

个人简历制作 时间:2020-03-14

【www.myl5520.com--个人简历制作】

电力系统谐振原因及处理措施分析
篇一:pq耦合因素导致的电压谐振

一、概述

铁磁谐振是由铁心电感元件,如发电机、变压器、电压互感器、电抗器、消弧线圈等和和系统的电容元件,如输电线路、电容补偿器等形成共谐条件,激发持续的铁磁谐振,使系统产生谐振过电压。

电力系统的铁磁谐振可分二大类:一类是在66kV及以下中性点绝缘的电网中,由于对地容抗与电磁式电压互感器励磁感抗的不利组合,在系统电压大扰动(如遭雷击、单相接地故障消失过程以及开关操作等)作用下而激发产生的铁磁谐振现象;另一类是发生在220kV(或110kV)变电站空载母线上,当用220kV、110kV带断口均压电容的主开关或母联开关对带电磁式电压互感器的空母线充电过程中,或切除(含保护整组传动联跳)带有电磁式电压互感器的空母线时,操作暂态过程使连接在空母线上的电磁式电压互感器组中的一相、两相或三相激发产生的铁磁谐振现象,即串联谐振,简单地讲就是由高压断路器电容与母线电压互感器的电感耦合产生谐振由于谐振波仅局限于变电站空载母线范围内,也称其为变电站空母线谐振。

二、铁磁谐振的现象

1、铁磁谐振的形式及象征

1)基波谐振:一相对地电压降低,另两相对地电压升高超过线电压;或两相电压降低、一相电压升高超过线电压、有接地信号发出

2)分次谐波:三相对地电压同时升高、低频变动

3)高次谐波:三相对地电压同时升高超过线电压

2、串联谐振的现象:线电压升高、表计摆动,电压互感器开口三角形电压超过100V

三、铁磁谐振产生的原因及其分析:

1、铁磁谐振产生的原因:

1)、有线路接地、断线、断路器非同期合闸等引起的系统冲击

2)、切、合空母线或系统扰动激发谐振

3)、系统在某种特殊运行方式下,参数匹配,达到了谐振条件

2、串联谐振产生的原因:进行刀闸操作时,断路器隔离开关与母线相连,引发断路器端口电容与母线上互感器耦合满足谐振条件

3、电力系统铁磁谐振产生的原因分析

电力系统是一个复杂的电力网络,在这个复杂的电力网络中,存在着很多电感及电容元件,尤其在不接地系统中,常常出现铁磁谐振现象,给设备的安全运行带来隐患,下面先从简单的铁磁谐振电路中对铁磁谐振原因进行分析。

3.1简单的铁磁谐振电路中谐振原因分析

在简单的R、C和铁铁芯电感L电路中,假设在正常运行条件下,其初始状态是感抗大于容抗,即ωL>(1/ωC),此时不具备线性谐振条件,回路保持稳定状态。但当电源电压有所升高时,或电感线圈中出现涌流时,就有可能使铁芯饱和,其感抗值减小,当ωL=(1/ωC)时,即满足了串联谐振条件,在电感和电容两端便形成过电压,回路电流的相位和幅值会突变,发生磁谐振现象,谐振一旦形成,谐振状态可能“自保持”,维持很长时间而不衰减,直到遇到新的干扰改变了其谐振条件谐振才可能消除。

3.2电力系统铁磁谐振产生的条件

电力系统中许多元件是属于电感性的或电容性的,如电力变压器、互感器、发电机、消弧线圈为电感元件,补偿用的并或串联电容器组、高压设备的寄生电容为电容元件,而线路各导线对地和导线间既存在纵向电感又存在横向电容,这些元件组成复杂的LC震荡回路,在一定的能源作用下,特定参数配合的回路就会出现谐振现象。由于铁

芯电感的磁通和电流之间的非线性关系,电压升高导致铁芯电感饱,极容易使电压互感器发生铁磁谐振。在中性点不接地系统中,如果不考虑线路的有功损耗和相间电容,仅考虑电压互感器电感L与线路的对地电容Co,当C大到一定值,且电压互感器不饱和时,感抗XL大于容抗XCo。而当电压互感器上电压上升到一定数值时,电压互感器的铁芯饱和,感抗XL小于容抗XCo,这样就构成了谐振条件,下列几种激发条件可以造成铁磁谐振:

a.电压互感器的突然投入;

b.线路发生单相接地;

c.系统运行方式的突然改变或电气设备的投切;

d.系统负荷发生较大的波动;

e.电网频率的波动;

f.负荷的不平衡变化等。

电压互感器的铁磁谐振必须由工频电源供给能量才能维持下去如果抑制或消耗这部分能量,铁磁谐振就可以抑制或消除。在我国6—10KV配电网内,发生互感器引起的谐振过电压情况甚为频繁,每到雷雨季节,熔断电压互感器保险的情况频繁发生。

3.3中性点不接地系统铁磁谐振产生的原因

中性点不接地系统中,为了监视绝缘,发电厂、变电所的母线上通常接有Yo接线的电磁式电压互感器,由于接有Yo接线的电压互感器,网络对地参数除了电力导线和设备的对地电容Co外,还有互感器的励磁电感L,由于系统中性点不接地,Yo接线的电磁式电压互感器的高压绕组,就成为系统三相对地的唯一金属通道。正常运行时,三相基本平衡,中性点的位移电压很小。但在某些切换操作如断路器合闸或接地故障消失后,由于三相互感器在扰动后电感饱和程度不一样而形成对地电阻不平衡,它与线路

对地电容形成谐振回路,可能激发起铁磁谐振过电压。电压互感器铁心饱和引起的铁磁谐振过电压是中性点不接地系统中最常见和造成事故最多的一种内部过电压。在实际运行设备中,由于中性点不接地电网中设备绝缘低,线树矛盾以及绝缘子闪烙等单相接地故障相对频繁,一般说来,单相接地故障是铁磁谐振最常见的一种激发方式。

3.4中性点直接接地系统铁磁谐振产生的原因

若中性点直接接地,则电压互感器绕组分别与各相电源电势相连,电网中各点电位被固定,不会出现中性点位移过电压;若中性点经消弧线圈接地,其电感值远小于电压互感器的励磁电感,相当于电压互感器的电感被短接,电压互感器的变化也不会引起过电压。但是,当中性点直接接地或经过消弧线圈接地的系统中,由于操作不当和某些倒闸过程,也会形成局部电网在中性点不接地方式下临时运行。在中性点直接接地电力系统中,一般铁磁谐振的激发因素为合刀闸和断路器分闸。在进行此操作时,由于电路内受到足够强烈的冲击扰动,使得电感L两端出现短时间的电压升高、大电流的震荡过程或铁心电感的涌流现象。这时候很容易和断路器的均压电容Ck一起形成铁磁谐振。

四、铁磁谐振对电力系统安全运行的影响

通过以上分析,我们就能够明白,当线路发生单相接地或断路器操作等干扰时,造成电压互感器电压升高,三相铁芯受到不同的激励而呈现不同程度的饱和,电压互感器的各相感抗发生变化,各相电感值不相同,中性点位移产生零序电压。由于线路电流持续增大,导致电压互感器铁芯逐渐磁饱和,当满足ωL=1/ωC时,即具备谐振条件,从而产生谐振过电压,其造成的主要影响如下:

1、中性点不接地系统中,其运行方式的主要特点是单相接地后,允许维持一定的时间,一般为2h不致于引起用户断电。但随着中低压电网的扩大,出线回路数增多、线路增长,电缆线路的逐渐增多,中低压电网对地电容电流亦大幅度增加,单相接地时

接地电弧不能自动熄灭必然产生电弧过电压,一般为3—5倍相电压甚至更高,致使电网中绝缘薄弱的地方放电击穿,并且在过电压的作用下极易造成第二点接地发展为相间短路造成设备损坏和停电事故,严重威胁电网安全运行。

2、在发生谐振时,电压互感器一次励磁电流急剧增大,使高压熔丝熔断。如果电流尚未达到熔丝的熔断值,但超过了电压互感器额定电流,长时间处于过电流状况下运行,必然造成电压互感器烧损。

3、谐振发生后电路由原来的感性状态转变为容性状态,电流基波相位发生180°反转,发生相位反倾现象,可导致逆序分量胜于正序分量,从而使小容量的异步电动机发生反转现象。

4、产生高零序电压分量,出现虚幻接地和不正确的接地指示。

五、常用的消谐方法及优缺点

多年来,国内外专家学者对铁磁谐振做了大量研究,在理论分析方面,前人进行了大量卓有成效的工作,阐明了这类非线性谐振问题中所蕴含的不同于线性谐振的丰富内容,给我们提供了坚实的理论基础。一般来讲,消谐应从两方面着手,即改变电感电容参数以破坏谐振条件和过吸收与消耗谐振能量以抑制谐振的产生,或使其受阻尼而消失。下面是常用的消谐方法。

1、中性点不接地系统常见的消谐措施

1.1采用励磁特性较好的电压互感器

目前,在我单位新建变电站电压互感器选型时尽量采用采用励磁特性较好的电压互感器。电压互感器伏安特性非常好,如每台电压互感器起始饱和电压为1.5Ue,使电压互感器在一般的过电压下还不会进入饱和区,从而不易构成参数匹配而出现谐振。显然,若电压互感器伏安特性非常好,电压互感器有可能在一般的过电压下还不会进入较

浅析一次因谐振引起的跳闸事故
篇二:pq耦合因素导致的电压谐振

浅析一次因谐振引起的跳闸事故

摘 要:本文从简述了我市一110KV变电站因发生铁磁谐振引起开关跳闸,致使全站站用电全失。并针对本次事故的发生原因和事故过程作了简单分析,并提出了关于消除电力系统谐振的几点措施。 关键词:事故跳闸 铁磁谐振 防范措施

情况简介:2008.9.28日4:17 110KV合兴变报10KV母线接地,4:57 1240#1站用变保护过流一段保护动作跳开1240开关致交流I段母线失压,在08:47 时137悦来乙线保护过流I段动作,跳开137开关后重合成功,08:49 152#2接地变保护过流二段动作,跳开152开关致站用变全站失电,后经查找发现接地点在137悦来乙线出线上(后于09:23拉开137出线开关),最后在10:11合上1240开关恢复站用电,10:22分合上152开关,137于12:01恢复送电。

站内基本情况:1240#1站用变挂接在东莱变电站供电的124书院线上,152 #2站用变接于合兴变10KVII段母线上,1240#1站用变为江苏华鹏变压器厂的DKSC-400(100)/10.5型干式变压器,采用一次侧中性点直接接地方式。152#2接地变也是同样型号的干式变压器,一次侧中性点经消弧线圈接地,之间以1520刀闸隔离。母线压变为大连金业电力设备有限公司生产的型号为UNE10-SV的压变,为电磁型电压互感器。1240定值:I段 3A 0s II段 1A 0.5s;152定值:I段 3A 0s II段1A 0.5S CT变比均为200/5。出线CT变比600/5。

第一:初步分析

观察事件记录发现1240#1站用变保护多次启动或动作,在第一次过流动作开关跳开且后又有多次过流II段动作,152保护也有类似情况。我们在现场对保护装置中录波进行分析。录波图如下:

1)图一

图三

2)从后台机的报文(多次报10KV母线接地动作和母线接地返回)和调出的录波波形可以看出实际上是137的B相间歇性单相接地(最后张图四:B相电压很小,AC相电压升为线压)。从图二可以看到137的BC两相短路,峰值电流最大有40A且方向相反,可知发生第二点接地发展为相间短路(原仅B相电流较大,后BC相电流也变大)。从其他152保护的录波来看,由于站用变的CT变比较小 (200/5)电流波形均为尖顶波,CT发生严重饱和,导致保护不能迅速动作。而三相电压的幅值很大最高达184V(有效值184/1.4约130V),波形为平顶波。而且波形中直流分量,谐波含量很大,二 三 五次谐波含量较大。

3)经现场运行人员现场勘察,发现消弧线圈的1520刀闸未合,导致消弧线圈未投入工作。

结论:综合以上现象,分析是系统发生了单相接地引起的铁磁谐振。

第二:结合理论分析:

一、铁磁谐振的基本模型

在简单的R、C 和铁铁芯电感L电路中,如图1 所示,假设在正常运行条件下,其初始状态是感抗大于容抗,即ωL > (1/ωC),此时不具备线性谐振条件,回路保持稳定状态。但当电源电压有所升高时,或电感线圈中出现涌流时,就有可能使铁芯饱和,其感抗值减小,当ωL = (1/ωC)时,即满足了串联谐振条件,在电感和电容两端便形成过电压,回路电流的相位和幅值会突变,发生磁谐振现象,串联铁磁谐振电路特性曲线图如图2,pq耦合因素导致的电压谐振。

图1 串联铁磁谐振电路 图2 串联铁磁谐振电路特性曲线

pq耦合因素导致的电压谐振。

图中电压电流均指工频下的有效值。其中直线1 是电容的伏安特性Uc=I·(1/ωC),曲线2 是电感非线性伏安特性UL(I),曲线3 式电感和电容串联支路的伏安特性,其纵坐标U=| UL-Uc|,d点是谐振点,在该点ωL =(1/ωC)。Id 的左侧ωL > (1/ωC),串联支路处于感性工作状态;Id 的右侧ωL < (1/ωC),串联支路处于容性工作状态。当电源电压由零开始均匀升高,电路的工作点沿曲线3的0-a段上升;但当电源电压超过Id 对应的Ud 之后,工作点显然不能是a-d 段,因为a-d 段意味着要求的电源电压下降,且该段上的点不满足稳定工作条件,不能成为实际的工作点,而是经过某一过度过程,从工作点a一跃而跳到工作点b,b 点和a 点工作状态相比较,其励磁电源电压虽然一样,但电容上的电压Uc 却大了许多,电感上的电压UL也增大了,即此时产生了过电压。产生过电压的原因在于电源电压已超过支路能工作在感性状态的极限值Ud,因而只能工作到b-c 段,即电感饱和以后的容性工作状态,才能达到新的稳定状态,这个过程为铁磁谐振状态,谐振一旦形成,谐振状态可能“自保持”,维持很长时间而不衰减,直到遇到新的干扰改变了其谐振条件谐振才可能消除。

二、铁磁谐振的发生条件和主要特点:

1、谐振回路中铁心电感为非线性的,电感量随电流增大、铁心饱和而下降;这是铁磁谐振产生的根本性原因。

2、铁磁谐振需要一定的激发条件,使电压、电流幅值从正常工作状态转移到谐振状态。如TV突然合闸、单相接地突然消失、外界对系统的干扰或系统操作产生的过电压等。

3、铁磁谐振存在自保持现象。激发因素消失后,铁磁谐振过电压仍然可以继续长期存在;

4、铁磁谐振过电压一般不会非常高,过电压幅值主要取决于铁心电感的饱和程度。

在实际运行设备中,由于中性点不接地电网中设备绝缘低,线树矛盾以及绝缘子闪烙等单相接 地故障相对频繁,一般说来,单相接地故障是铁磁谐振最常见的一种激发方式。

三、结合本次事故

由前面分析可知,事故中具备了谐振的条件,发生了铁磁谐振,产生了大电流和过电压。导致了此次事故。

两个站用变为ZNYn11接线,152站用变的中性点经消弧线圈接地(消弧线圈实际没有工作),1240#1站用变挂接在合兴电站变10KV出线上,1240#1站用变的中性点直接接地。正常运行时站用变负载很小(仅室内空调及部分照明),可以看作对地有个大的电感。合兴变的10KV母线以及出线对地有一定的电容。可以看做一对地电容C,当合兴10KV系统发生单相接地,系统单相接地有两个过渡过程,一是接地时;二是接地消失时。接地时,当系统某相接地时,该相直接与地接通,另两相的对地电容C也有良好的金属通道。因此在接地时的三相对地电容的充放电过程的通道,不会走站用变的绕组,就是说发生接地时1240#1站用变不会产生涌流,因为已有某相固定在地电位,也就不

会发生铁磁谐振。但是当接地消失时,情况就不同了。在接地消失的过程中,固定的地电位已消失,三相对地的金属通道已无其他路可走,只有走1240#1站用变的中性点(母线压变一次侧不直接接地,中性点经一避雷器接地),即此时三相对地电容(零序电容)3C0中存储的电荷,对1240站用变高压绕组电感L/3放电,相当一个直流源作用在带有铁芯的电感线圈上,铁芯会深度饱和。对于接地相来说,更是相当一个空载变压器突然合闸,叠加出更大的暂态涌流,其感抗值减小,当满足ωL=<1/ωC时,即具备谐振条件,在电感和电容两端便形成过电压,回路电流的相位和幅值会突变,发生磁谐振现象。由于一次电流增大导致了多台保护启动。更是导致了1240,152开关跳闸,导致了全站站用电全失。

1240#1站用变开关跳开后,从一次系统看1240#1站用变与合兴变的10KV母线是相互独立的,但1240也出现了过流过压现象。我推测是由于同杆架设的线路对124线间耦合电压较大。此耦合电压也作为谐振的电源之一,通过1240的开关对合兴变10KV母线产生影响。从事件报文看,当124开关跳开后,保护也多次启动,动作,原因是124断路器的断口电容的存在,产生了谐振。152保护多次动作情况类似。

此次谐振持续时间较长,由于电压很大(一次约180/1.414*10000/100=12.7KV),有可能发生闪烙,严重时可能损坏设备。

第三:防止铁磁谐振的几点建议

1、加快故障处理时间,尽快破坏发生谐振的条件。

2、破坏谐振条件,增大电容,多投电容器。当无接地变皆消弧变的变电站要常投电容器。研究发现增大各相对地电容C0,使Xco/Xm<0.01 时,回路参数超出谐振的范围,可防止谐振。

3、即时加装消弧线圈。并且要保证消弧线圈可靠运行。

4、PT的中性点加消谐器,有损坏立即更换(谐振时易过热损坏)。采用励磁特性较好的电压互感器或者使用电容式电压互感器。

另外,基于站用电对变电所内设备的正常运行的重要性,吸取本次站用变全失的对站用电全失的经验,可以改进站用变保护,当全站仅一台站用变运行时,严格跳闸条件,如加所用电电压闭锁等,防止类似事故的发生。

电力系统中的铁磁谐振
篇三:pq耦合因素导致的电压谐振

浅谈电力系统中的铁磁谐振pq耦合因素导致的电压谐振。

近年由于山西电网的快速发展、再加上2008年又是电网建设年,山西电网进行了大量的改造和扩建工程,大到500kV、小到10kV配网都有较大的变化,使得整个网络变得更加复杂、灵活、坚强。但就是因为电网结构的较大变化(如中低压电网的扩大,出线回路数增多、线路增长,电缆线路的逐渐增多,中低压电网对地电容电流亦大幅度增加等)以前电网中少有发生的铁磁谐振现象,现在却时有发生,由于谐振时会产生过电压,给电网安全造成了积大的威胁,如不采取有效的消除措施,可能会造成设备损坏、甚至还会诱发产生更为严重的电力系统事故。

一、概述

铁磁谐振是由铁心电感元件,如发电机、变压器、电压互感器、电抗器、消弧线圈等和和系统的电容元件,如输电线路、电容补偿器等形成共谐条件,激发持续的铁磁谐振,使系统产生谐振过电压。

电力系统的铁磁谐振可分二大类:一类是在66kV及以下中性点绝缘的电网中,由于对地容抗与电磁式电压互感器励磁感抗的不利组合,在系统电压大扰动(如遭雷击、单相接地故障消失过程以及开关操作等)作用下而激发产生的铁磁谐振现象;另一类

是发生在220kV(或110kV)变电站空载母线上,当用220kV、110kV带断口均压电容的主开关或母联开关对带电磁式电压互感器的空母线充电过程中,或切除(含保护整组传动联跳)带有电磁式电压互感器的空母线时,操作暂态过程使连接在空母线上的电磁式电压互感器组中的一相、两相或三相激发产生的铁磁谐振现象,即串联谐振,简单地讲就是由高压断路器电容与母线电压互感器的电感耦合产生谐振由于谐振波仅局限于变电站空载母线范围内,也称其为变电站空母线谐振。

二、铁磁谐振的现象

1、铁磁谐振的形式及象征

1)基波谐振: 一相对地电压降低,另两相对地电压升高超过线电压;或两相电压降低、一相电压升高超过线电压、有接地信号发出

2)分次谐波: 三相对地电压同时升高、低频变动

3)高次谐波: 三相对地电压同时升高超过线电压

2、串联谐振的现象:线电压升高、表计摆动,电压互感器开口三角形电压超过100V

三、铁磁谐振产生的原因及其分析:

1、铁磁谐振产生的原因:

1)、有线路接地、断线、断路器非同期合闸等引起的系统冲击

2)、切、合空母线或系统扰动激发谐振

3)、系统在某种特殊运行方式下,参数匹配,达到了谐振条件

2、串联谐振产生的原因:进行刀闸操作时,断路器隔离开关与母线相连,引发断路器端口电容与母线上互感器耦合满足谐振条件

3、电力系统铁磁谐振产生的原因分析

电力系统是一个复杂的电力网络,在这个复杂的电力网络中,存在着很多电感及电容元件,尤其在不接地系统中,常常出现铁磁谐振现象,给设备的安全运行带来隐患,下面先从简单的铁磁谐振电路中对铁磁谐振原因进行分析。

3.1 简单的铁磁谐振电路中谐振原因分析

在简单的R、C 和铁铁芯电感L电路中,假设在正常运行条件下,其初始状态是感抗大于容抗,即ωL > (1/ωC),此时不具备线性谐振条件,回路保持稳定状态。但当电源电压有所升高时,或电感线圈中出现涌流时,就有可能使铁芯饱和,其感抗值减小,当ωL = (1/ωC)时,即满足了串联谐振条件,在电感和电容两端便形成过电压,回路电流的相位和幅值会突变,发生磁谐振现象,谐振一旦形成,谐振状态可能“自保持”,维持很长时间而不衰减,直到遇到新的干扰改变了其谐振条件谐振才可能消除。

3.2 电力系统铁磁谐振产生的条件

电力系统中许多元件是属于电感性的或电容性的,如电力变压器、互感器、发电机、消弧线圈为电感元件,补偿用的并或串联电容器组、高压设备的寄生电容为电容元件,而线路各导线对地和导线间既存在纵向电感又存在横向电容,这些元件组成复杂的

LC 震荡回路,在一定的能源作用下,特定参数配合的回路就会出现谐振现象。由于铁芯电感的磁通和电流之间的非线性关系,电压升高导致铁芯电感饱,极容易使电压互感器发生铁磁谐振。在中性点不接地系统中,如果不考虑线路的有功损耗和相间电容,仅考虑电压互感器电感L 与线路的对地电容Co ,当C大到一定值,且电压互感器不饱和时,感抗XL大于容抗XCo。而当电压互感器上电压上升到一定数值时,电压互感器的铁芯饱和,感抗XL小于容抗XCo,这样就构成了谐振条件,下列几种激发条件可以造成铁磁谐振:

a. 电压互感器的突然投入;

b. 线路发生单相接地;

c. 系统运行方式的突然改变或电气设备的投切;

d. 系统负荷发生较大的波动;

e. 电网频率的波动;

f. 负荷的不平衡变化等。

电压互感器的铁磁谐振必须由工频电源供给能量才能维持下去如果抑制或消耗这部分能量,铁磁谐振就可以抑制或消除。在我国6—10KV 配电网内,发生互感器引起的谐振过电压情况甚为频繁,每到雷雨季节,熔断电压互感器保险的情况频繁发生。

3.3 中性点不接地系统铁磁谐振产生的原因

中性点不接地系统中,为了监视绝缘,发电厂、变电所的母线上通常接有Yo接线的电磁式电压互感器,由于接有Yo接线的电压

互感器,网络对地参数除了电力导线和设备的对地电容Co外,还有互感器的励磁电感L,由于系统中性点不接地,Yo接线的电磁式电压互感器的高压绕组,就成为系统三相对地的唯一金属通道。正常运行时,三相基本平衡,中性点的位移电压很小。但在某些切换操作如断路器合闸或接地故障消失后,由于三相互感器在扰动后电感饱和程度不一样而形成对地电阻不平衡,它与线路对地电容形成谐振回路,可能激发起铁磁谐振过电压。电压互感器铁心饱和引起的铁磁谐振过电压是中性点不接地系统中最常见和造成事故最多的一种内部过电压。在实际运行设备中,由于中性点不接地电网中设备绝缘低,线树矛盾以及绝缘子闪烙等单相接地故障相对频繁,一般说来,单相接地故障是铁磁谐振最常见的一种激发方式。

3.4 中性点直接接地系统铁磁谐振产生的原因

若中性点直接接地,则电压互感器绕组分别与各相电源电势相连,电网中各点电位被固定,不会出现中性点位移过电压;若中性点经消弧线圈接地,其电感值远小于电压互感器的励磁电感,相当于电压互感器的电感被短接,电压互感器的变化也不会引起过电压。但是,当中性点直接接地或经过消弧线圈接地的系统中,由于操作不当和某些倒闸过程,也会形成局部电网在中性点不接地方式下临时运行。在中性点直接接地电力系统中,一般铁磁谐振的激发因素为合刀闸和断路器分闸。在进行此操作时,由于电路内受到足够强烈的冲击扰动,使得电感L 两端出现短时间的

电压互感器铁磁谐振的发生原因及防范措施
篇四:pq耦合因素导致的电压谐振

电压互感器铁磁谐振的发生原因及防范措施

电力系统中存在着许多储能元件,当系统进行操作或发生故障时,变压器、互感器等含铁芯元件的非线性电感元件与系统中电容串联可能引起铁磁谐振,对电力系统安全运行构成危害。在中性点不接地的非直接接地系统中,铁磁式电压互感器引起的铁磁谐振过电压是常见的,是造成事故较多的一种内部过电压。这种过电压轻则使电压互感器一次熔丝熔断,重则烧毁电压互感器,甚至炸毁瓷绝缘子及避雷器造成系统停运。在一定的电源作用下会产生串联谐振现象,导致系统中出现严重的谐振过电压。

1 电压互感器引起铁磁谐振的发生原因分析pq耦合因素导致的电压谐振。

在中性点不接地系统中,为了监视对地绝缘,母线上常接有Y接线的电磁式电压互感器,如图1所示,图中u0为电源电势,C为线路等设备的对地电容,L为电压互感器激磁电感,R0为中性点串联消谐电阻。

在正常运行状态下电压互感器励磁感抗很大,其数值范围在兆殴级以上且各相对称。C数值视线路长短而定,线路愈长容抗愈小,即以1 km线路而言,其每相对地电容约0.004μF ,故其容抗小于1 MΩ,所以整个网络对地仍呈容性且基本对称,电网中性点的位移电压很小,接近地电位。但电压互感器的励磁电感随通过的电流大小而变化,其U-I特性如图2所示。

由图2可见,曲线的起始一段接近直线,其电感相应地保持常数。当激磁电流过大时,铁芯饱和,则L值随之大大降低。正常运行时铁芯工作在直线范围,当系统中出现某些波动,如电压互感器突然合闸的巨大涌流、线路瞬间单相弧光接地等,使电压互感器发生三相不同程度的饱和,以至破坏了电网的对称,电网中性点就出现较高的位移电压,造成工频谐振或激发分频谐振。

2 铁磁谐振的特点

对于铁磁谐振电路,在相同的电源电势作用下,回路可能不只有一种稳定的工作状态。电路到底稳定在哪种工作状态,要看外界冲击引起的过渡过程的情况。

TV的非线性铁磁特性是产生铁磁谐振的根本原因,但铁磁元件的饱和效应本身,也限制了过电压的幅值。此外回路损耗也使谐振过电压受到阻尼和限制。当回路电阻大于一定的数值时,就不会出现强烈的铁磁谐振过电压。

串联谐振电路,产生铁磁谐振过电压的的必要条件是ω0 = 1/L0C<ω。因此铁磁谐振可在很大的范围内发生。

维持谐振振荡和抵偿回路电阻损耗的能量均由工频电源供给。为使工频能量转化为其它谐振频率的能量,其转化过程必须是周期性,且有节律的,即…1/2(1,2,3…)倍频率的谐振。 铁磁谐振对TV的损坏,铁磁谐振(分频)一般应具备如下三个条件。

1、电磁式电压互感器(TV)的非线性效应,是产生铁磁谐振的主要原因。

2、TV感抗为容抗的100倍以内,即参数匹配在谐振范围。

3、要有激发条件,如投入和断开空载母线、TV突然合闸、单相接地突然消失、外界对系统的干扰或系统操作产生的过电压等。

由前面分析可知,事故中具备了3个条件,才导致了此次事故。当良站10 kV系统发生单相接地时,故障点流过电容电流,未接地的两相B、C相电压升高31/2,对系统产生扰动,在这一瞬间电压突变过程中,TV高压线圈的非接地两相的励磁电流就要突然增大,甚至饱和,由此构成相间串联谐振。饱和后的TV励磁电感变小,系统网络对地阻抗趋于感性,此时若系统网络的对地电感与对地电容相匹配,就形成共振回路,激发各种铁磁谐振过电压。尤其是分频铁磁谐振可导致相电压低频摆动,励磁感抗成倍下降,产生过电压,过电压幅值可达到近2~3.5Ue以上,但此过电压达不到避雷器的动作电压1.7 kV,故母线避雷器并未动作。同时,感抗下降会使励磁回路严重饱和,励磁电流急剧加大,电流大大超过额定值,据试验,分频谐振的电流可达正常电流的240倍以上,导致铁芯剧烈振动。TV是在这样大的电流下运行,使本身的温度也迅速升高,当热量积累到一定程度,干式TV中大量绝缘纸、绝缘介质会受热气化,体积急速膨胀,而存放绝缘纸、绝缘介质的干式互感器内部空间有限,当压强积累到一定程度时便产生了TV爆炸。

3 铁磁谐振频率区域的判别(分频、高频……)

电力网中发生不同频率的谐振,与系统中导线对地分布电容的容抗Xc0,和电压互感器并联运行的综合电感的感抗Xm,两者的比值Xc0/Xm有直接关系。

Xco视具体情况而定,架空线路Xco=350×31/2/L,kΩ/km;电缆Xco=10×31/2/L,kΩ/km;变压器线圈对地电容的容抗Xc0一般取600~1 000 kΩ。其中L为线路长度,单位km。

Xm为由电压互感器的二次侧感抗100 V/I折算到一次侧的感抗。其中I为二次侧的实际测试电流。

3.1 分频谐振

当比值Xc0/Xm较小(在0.01~0.07)时发生的谐振是分频谐振。电容和电感在振荡时能量交换所需的时间较长,振荡频率较低,表现为:过电压倍数较低,一般不超过2.5倍相电压;三相电压表的指示数值同时升高,并周期性摆动,线电压正常。

3.2 高频谐振

当比值Xc0/Xm较大(在0.55~2.8)时发生的谐振是高频谐振。发生高频谐振时线路的对地电容较小,振荡时能量交换较快。表现为过电压倍数较高;三相电压表的指示数值同时升高,最大值可达到4~5倍相电压,线电压基本正常;谐振时过电流较小。

3.3 基频谐振

当比值Xc0/Xm接近于1时,发生谐振的谐振频率与电网频率相同,故称之为基频谐振。其表现为:三相电压表中指示数值为两相升高、一相降低,线电压正常;过电流很大,往往导致电压互感器熔丝熔断,严重时甚至会烧坏互感器;过电压不超过3.2倍相电压,伴有接地信号指示,称为虚幻接地现象。

当Xc0/Xm≤0.01或Xc0/Xm≥2.8时,系统不会发生铁磁谐振。在不同的谐振区域,谐振的外施触发电压是不同的。分频谐振区谐振外施电压为最低,在正常额定电压下系统稍有波动就可触发谐振。而高频谐振区的谐振外施电压最高。在同一谐振区域内不同的Xc0/Xm比值下,谐振的最低外施触发电压(临界值)也是不同的。

良站10 kV TV 二次侧的实际测试电流为19 A,则TV的感抗Xm = 100 V/I = 5.2 MΩ。出线总长为:95.034 km,10 kV线路电容值为0.004μF/km,良站10 kV出线的容抗比情况如表2所示。

根据表1良站线路和TV 的参数Xc0/Xm数大于0.01且小于0.07,说明在系统扰动时(如发生单相接地时)良站是有可能出现铁磁谐振的,且其中主要是分频谐振。

4 防止铁磁谐振的措施

电网的不断发展使线路参数发生变化,铁磁式电压互感器的大量使用,使电网产生铁磁谐振的可能性增大。所以,为了使电网安全可靠供电,必须采取有效措施防止铁磁谐振的发生。

防止铁磁谐振的产生,应从改变供电系统电气参数着手,破坏回路中发生铁磁谐振的参数匹配。这样既可防止电压互感器发生磁饱和,又可预防电压互感器铁磁谐振过电压的产生。

4.1 改变电气参数

4.1.1 装设继电保护设备

当电网发生单相接地故障时,为改变电压互感器的谐振参数,可通过装设一套继电保护设备来实现。该装置是利用单相接地时所产生的较大谐振电流,启动电流继电器投入,将电压互感器二次侧开口三角处绕组短接。当故障排除后,保护装置恢复原状,电压互感器恢复正常运行。

4.1.2 选用不易饱和的或三相五柱式电压互感器

10 kV系统中使用的电压互感器,应选用励磁感抗大于1.5 MΩ的电压互感器。

4.1.3 减少电压互感器台数

在同一电网中,应尽量减少电压互感器的台数,尤其是限制中性点接地电压互感器的台数。如变电所的电压互感器只作为测量仪表和保护用时,其中性点不允许接地。

本文来源:http://www.myl5520.com/gerenjianli/102344.html

推荐内容